Fluoride Action Network

Repeated low-dose exposures to sarin disrupted the homeostasis of phospholipid and sphingolipid metabolism in guinea pig hippocampus.

Source: Toxicology Letters [epub before print] | Authors: Shi M, Deng S, Cui Y, Chen X, Shi T, et al.
Posted on November 27th, 2020
Location: International
Industry type: Chemical Weapons

Note from FAN:
The molecular structure of Sarin:

2D chemical structure of 107-44-8


  • Repeated low-dose sarin disturbed the cognitive ability in guinea pigs.
  • Sarin disturbed phospholipid and sphingolipid metabolism in hippocampus.
  • Neuropathy target esterase plays an important role on phospholipid metabolism.
  • Biological function of identified metabolites that against sarin lesions need to be studied.


Repeated low-level exposure to sarin results to hippocampus dysfunction. Metabonomics involves a holistic analysis of a set of metabolites in an organism in the search for a relationship between these metabolites and physiological or pathological changes. The objective of the present study was to evaluate the effects of repeated exposure to low-level sarin on the metabonomics in hippocampus of a guinea pig model. Guinea pigs were divided randomly into control and sarin treated groups (n = 14). Guinea pigs in the control group received saline; while the sarin-treated group received 0.4×LD50 (16.8 ug/kg) sarin. Daily injections (a total of 14 days) were administered sc between the shoulder blades in a volume of 1.0 ml/kg body weight. At the end of the final injection, 6 animals in each group were chosen for Morris water maze test. The rest guinea pigs (n = 8 for each group) were sacrificed by decapitation, and hippocampus were dissected for analysis. Compared with the control-group, the escape latency in sarin-group was significantly (p< 0.05) longer while the crossing times were significantly decreased in the Morris water task (p < 0.05). Sarin inhibited activities of acetylcholinesterase (AChE) and neuropathy target esterase (NTE) in hippocampus. The AChE activity of hippocampus from sarin-treated groups is equivalent to 59.9 ± 6.4%, and the NTE activity of hippocampus from sarin-groups is equivalent to 78.1 ± 8.3% of that from control-group. Metabolites were identified and validated. A total of 14 variables were selected as potential biomarkers. Phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylinositol (PI), Lysophosphatidylethanolamine (LysoPE or LPE)] and sphingolipids (SPs) [sphinganine (SA), phytosphingosine (PSO) and sphinganine-1-phosphate (SA1P)] were clearly modified. In conclusion, repeated low-dose exposures to sarin disrupted the homeostasis of phospholipid and sphingolipid metabolism in guinea pig hippocampus and may lead to a neuronal-specific function disorders. Identified metabolites such as SA1P need to be studied more deeply on their biological function that against sarin lesions. In future research, we should pay more attention to characterize the physiological roles of lipid metabolism enzymes as well as their involvement in pathologies induced by repeated low-level sarin exposure.