Fluoride Action Network

Nicaragua. Sulfate, chloride and fluoride retention in Andosols exposed to volcanic acid emissions

Source: Environmental Pollution 126(3):445-57. | Unité des sciences du sol, Croix du sud 2/10, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
Posted on October 30th, 2003
Industry type: Volcanoes

Abstract:

The continuous emissions of SO(2), HCl and HF by Masaya volcano, Nicaragua, represent a substantial source of atmospheric S-, Cl- and F-containing acid inputs for local ecosystems. We report on the effects of such acid depositions on the sulfate, chloride and fluoride contents in soils (0-40 cm) from two distinct transects located downwind from the volcano. The first transect corresponds to relatively undifferentiated Vitric Andosols, and the second transect to more weathered Eutric Andosols. These soils are exposed to various rates of volcanogenic acid addition, with the Vitric sites being generally more affected. Prolonged acid inputs have led to a general pH decrease and reduced exchangeable base cation concentrations in the Andosols. The concentrations of 0.5 M NH(4)F- and 0.016 M KH(2)PO(4)-extractable sulfate (NH(4)F-S and KH(2)PO(4)-S, respectively) indicate that volcanic S addition has increased the inorganic sulfate content of the Vitric and Eutric soils at all depths. In this process, the rate of sulfate accumulation is also dependent on soil allophane contents. For all soils, NH(4)F extracted systematically more (up to 40 times) sulfate than KH(2)PO(4). This difference suggests sulfate incorporation into an aluminum hydroxy sulfate phase, whose contribution to total inorganic sulfate in the Vitric and Eutric Andosols is estimated from approximately 34 to 95% and approximately 65 to 98%, respectively. The distribution of KH(2)PO(4)-extractable chloride in the Vitric and Eutric Andosols exposed to volcanic Cl inputs reveals that added chloride readily migrates through the soil profiles. In contrast, reaction of fluoride with Al and Fe oxyhydroxides and allophanes is an important sink mechanism in the Masaya Andosols exposed to airborne volcanic F. Fluoride dominates the anion distribution in all soil horizons, although F is the least concentrated element in the volcanic emissions and depositions. The soil anion distribution reflects preferential retention of fluoride over sulfate and chloride, and of sulfate over chloride. The primary acidifying agent of the Andosols subject to the volcanic acid inputs is HCl.