Fluoride Action Network

Abstract

The mechanisms underlying fluoride-induced apoptosis in neurons still remain unknown. To investigate apoptosis, caspase-3 activity, and mRNA expression of Fas, Fas-L, and caspases (-3 and -8) induced by fluoride, human neuroblastoma (SH-SY5Y) cells were incubated with 0, 20, 40, and 80 mg/L sodium fluoride (NaF) for 24 h in vitro. The data show that cell viability in the 40 and 80 mg/L fluoride groups were significantly lower than that of the control group. The percentages of apoptosis in the 40 and 80 mg/L fluoride groups were markedly higher than those in the control group, and they increased with the increase in fluoride concentration. The activity of caspase-3 and mRNA expression levels for Fas, Fas-L, and caspases (-3 and -8) in the 40 and 80 mg/L fluoride groups were significantly higher than those in the control group. An agonistic anti-Fas monoclonal antibody (CH-11) significantly augmented apoptosis induction by fluoride, showing a synergistic effect, while a Fas-blocking antibody (ZB4) partly inhibited fluoride-induced apoptosis of SH-SY5Y cells. The results indicate that fluoride exposure could induce apoptosis in SH-SY5Y cells, and the Fas/Fas-L signaling pathway may play an important role in the process.