Abstract
The cytotoxic effects of sodium fluoride (NaF) on hamster V79 cells and human EUE cells were studied by measuring the cloning efficiency and DNA, RNA and protein synthesis in cells cultured in the presence of NaF. Potential mutagenicity of NaF was followed on the basis of induced 6-thioguanine-resistant mutants in treated Chinese hamster V79 cells. The results showed that the addition of 10-150 micrograms of NaF per ml of culture medium induced 10-75% cytotoxic effect on hamster V79 cells but had no toxic effect on human EUE cells. NaF was cytotoxic to human EUE cells at considerably higher concentrations (200-600 micrograms/ml). Growth of both cell types with 100 and 200 micrograms of NaF per ml caused inhibition of 14C-thymidine, 14C-uridine and 14C-L-leucine incorporation. This means that NaF inhibits macromolecular synthesis whereby damaging effects were less drastic in human EUE cells. The results of detailed mutagenicity testing on hamster V79 cells showed that NaF did not show any mutagenic effect after long-term (24-h) incubation of hamster cells in the presence of 10-400 micrograms of NaF per ml of culture medium.
-
-
Effect of static magnetic field on the induction of micronuclei by some mutagens
OBJECTIVES: It is important to assess the risk of static magnetic fields (SMFs) on human health, because epidemiological studies have indicated that SMFs play a role in the development of diseases such as leukemia and brain tumor. In our environment, we have numerous chances to be exposed to not only
-
[Cytotoxicity and genotoxicity of fluorides in human mucosa and lymphocytes]
BACKGROUND: Fluorides are widely used in dental health products and drinking water, due to their beneficial effects in caries-prophylaxis and -treatment. Nevertheless, irritation of the gingiva and oropharyngeal mucosa as well as in gastric mucosa is observed since neither local nor systemic application is restricted to the teeth. These effects
-
Differential in vivo genotoxic effects of lower and higher concentrations of fluoride in mouse bone marrow cells.
In an in vivo genotoxicity investigation of the action of fluoride (F) on bone marrow cells, sodium fluoride (NaF) was administered through the drinking water of 2–3 month old Swiss albino mice for 30 days at lower (7.5, 15, and 30 mg/L) and higher concentrations (100 and 150 mg/L). Mitotic
-
The mutagenicity of sodium fluoride to L5178Y [wild-type and TK+/- (3.7.2c)] mouse lymphoma cells
L5178Y wild-type and TK+/- (3.7.2c) cells were treated with sodium fluoride over a range of concentrations (10-500 micrograms ml-1) and treatment times (4, 16 and 48 h) covering less than 10-100% survival. The mutant frequency at five genetic loci (resistance to ouabain, 6-thioguanine, excess thymidine, methotrexate and 1-beta-D-arabinofuranosyl cytosine) was
-
In vitro fluoride induced genotoxic effect on human blood lymphocyte cells and its amelioration by emblica officinalis extract
Background Fluoride is a widespread industrial pollutant. Although, acute and chronic exposure of fluoride results in adverse health effects, in vitro studies demands for further evidences to conclude on the role of F as genotoxic agent. We have investigated the genotoxic properties of fluoride on peripheral blood lymphocyte cells and evaluated
Related Studies :
-
-
-
Fluoride & Osteosarcoma: A Timeline
Several human epidemiological studies have found an association between fluoride in drinking water and the occurrence of osteosarcoma (bone cancer) in young males. These studies are consistent with the National Toxicology Program's (NTP) cancer bioassay which found that fluoride-treated male rats had an dose-dependent increase in osteosarcoma. Although a number of studies have failed to detect an association between fluoride and osteosarcoma, none of these studies have measured the risk of fluoride at specific windows in time, which based on recent results, is the critical question with respect to fluoride and osteosarcoma.
-
Micronucleus and Sister Chromatid Exchange Frequency in Endemic Fluorosis
The rise of sister chromatid exchange (SCE) and micronucleus (MN) in the peripheral blood lymphocytes of the fluorine-intoxicated patients indicates that fluorine is a mutagenic agent which can cause DNA and chromosomal damage.
-
Fluoride's Mutagenicity: In vivo Studies
Consistent with dozens of in vitro studies, a number of in vivo studies, in both humans and animals, have found evidence of fluoride-induced genetic damage. In particular, research on humans exposed to high levels of fluoride have found increased levels of "sister chromatid exchange" (SCE). As noted in one study: "In
-
A Critique of Gelberg's Study on Fluoride/Osteosarcoma in New York
The case-control study by Gelberg, published first as a PhD dissertation and then later in two peer-reviewed journals, may represent the most substantive study on fluoride/osteosarcoma previous to Bassin’s 2001 analysis. In assessing Gelberg’s data, we were at first struck by the existence of several notable errors in both the thesis and papers. While these errors do raise questions about the study, our primary concern with Gelberg’s work relates to the methods she used to analyze her data.
-
Fluoride & Liver Cancers in NTP Bioassay
On October 28, 1988, Battelle Columbus Laboratories submitted its Final Report to the NTP concerning the results of the Mouse study. The principal finding of Battelle's report was that a dose-dependent increase of a rare liver cancer (hepatocholangiocarcinoma) had occurred in the fluoride-treated male and female mice.
Related FAN Content :
-