Abstract
In our experiment, the 1-month effects of caffeine (Caff) and fluoride (F) administered separately and together on nitric oxide and total antioxidant status in serum, brain, liver and kidney of rats were investigated. Also, the influence of caffeine on fluoride excretion with urine was studied. Thirty adult male Wistar rats were divided into five equal groups of six each: (I) controls drinking tap water; (II) controls drinking tap water and receiving intragastrically 0.5 ml of tap water; (III) animals receiving 25 mg F/L in drinking water; (IV) animals receiving 4.7 mg Caff/kg bw/day; (V) animals receiving 25 mg F/L in drinking water and 4.7 mg Caff/kg bw/day. The applied fluoride caused increase of nitric oxide level (NO), intensified lipid peroxidation (TBARS) and decreased total antioxidant status in serum (TAS), brain, kidney and liver. Caffeine administered intragastrically, as an antioxidant, was relatively efficient in alleviating these adverse effects of F. In rats treated only with fluoride the F excretion in urine significantly increased in an exposure-time dependent-manner and did not change both in rats treated with Caff and co-exposed to Caff and F.
-
-
Lipid peroxidation in fluorosis and the protective role of dietary factors
The influence of chronic Fl intoxication on lipid peroxidation and the state of the antioxidant system was studied in rats on different diets. Chronic Fl intoxication inhibited antioxidant activity and caused an increase in the rate of peroxidation and the level of lipoperoxides in liver, brain and serum. Diets with
-
Evaluation of free radical-scavenging and anti-oxidant properties of black berry against fluoride toxicity in rats
Oxidative damage to cellular components such as lipids and cell membranes by free radicals and other reactive oxygen species is believed to be associated with the development of degenerative diseases. Fluoride intoxication is associated with oxidative stress and altered anti-oxidant defense mechanism. So the present study was extended to investigate
-
Effects of individual and combined exposure to sodium arsenite and sodium fluoride on tissue oxidative stress, arsenic and fluoride levels in male mice.
Arsenic and fluoride are potent toxicants, widely distributed through drinking water and food and often result in adverse health effects. The present study examined the effects of sodium meta-arsenite (100 mg/l in drinking water) and sodium fluoride (5 mg/kg, oral, once daily), administered either alone or in combination for 8
-
A possible mechanism for combined arsenic and fluoride induced cellular and DNA damage in mice
Arsenic and fluoride are major contaminants of drinking water. Mechanisms of toxicity following individual exposure to arsenic or fluoride are well known. However, it is not explicit how combined exposure to arsenic and fluoride leads to cellular and/or DNA damage. The present study was planned to assess (i) oxidative stress
-
Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat
BACKGROUND: Sodium fluoride (NaF) intoxication is associated with oxidative stress and altered antioxidant defense mechanism. The present study was carried out to evaluate the potential protective role of blackberry and quercetin (Q) against NaF-induced oxidative stress and histological changes in liver, kidney, testis and brain tissues of rats. METHODS: The rats
Related Studies :
-
-
-
Fluoridation of drinking water and chronic kidney disease: Absence of evidence is not evidence of absence
A fairly substantial body of research indicates that patients with chronic renal insufficiency are at an increased risk of chronic fluoride toxicity. Patients with reduced glomerular filtration rates have a decreased ability to excrete fluoride in the urine. These patients may develop skeletal fluorosis even at 1 ppm fluoride in the drinking water.
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride as a Cause of Kidney Disease in Animals
Because the kidney is exposed to higher concentrations of fluoride than all other soft tissues (with the exception of the pineal gland), there is concern that excess fluoride exposure may contribute to kidney disease - thus initiating a "vicious cycle" where the damaged kidneys increase the accumulation of fluoride, causing in
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride as a Cause of Kidney Disease in Humans
Because the kidney is exposed to higher concentrations of fluoride than all other soft tissues (with the exception of the pineal gland), there is concern that excess fluoride exposure may contribute to kidney disease - thus initiating a "vicious cycle" where the damaged kidneys increase the accumulation of fluoride, causing
Related FAN Content :
-