Abstract
For decades, mouse and other rodents have been used for study of oxidative or related studies such as the effect of fluoride. It is known that rodents normally synthesize their own vitamin C (VC) due to the presence of a key enzyme in ascorbic acid synthesis, lgulonolactone-?-oxidase (Gulo), while humans do not have the capacity of VC synthesis due to the deletion of most part of the GULO gene. The spontaneous fracture (sfx) mouse recently emerged as a model for study of VC deficiency. We investigated the effect of fluoride on liver cells from wild type Balb/c and sfx mice. We found that reduction of SOD, GPx and CAT activities were reduced in both wild type and sfx mice; however, the amount of reduction in the sfx cells is more than that in Balb/c cells. In addition, while both cells increased MDA, the increase in the sfx cells is greater than that in Balb/c cells. Gene networks of Sod, Gpx and Cat in the liver of humans and mice are also different. Our study suggests that reaction to fluoride in Vitamin C deficient mice might be different from that of wild type mice.
-
-
Tamarind seed coat extract restores fluoride-induced hematological and biochemical alterations in rats.
Fluoride (F-) is becoming an ineluctable environmental pollutant causing deleterious effects in humans. In the present study, we examined whether tamarind seed coat extract (TSCE) is beneficial against the F--induced systemic toxicity and hematological changes. Wistar rats were randomly grouped as follows: group I served as control; group II intoxicated
-
Protective effects of curcumin against fluoride-induced oxidative stress in the rat brain
We examined effects of a plant polyphenolic compound, curcumin, against fluoride-induced oxidative stress in the rat brain. Five experimental groups of male rats (10 animals each) were compared. Animals of these experimental groups were treated with curcumin (10 and 20 mg/kg body mass), vitamin C (10 mg/kg), and sample solvent
-
Protective effect of quercetin against sodium fluoride induced oxidative stress in rat's heart
The antioxidative and cardioprotective properties of quercetin were investigated against sodium fluoride (NaF) induced oxidative stress in rat hearts. Experimental rats were divided into five groups. The first group served as the untreated (normal) control. The second group received NaF at a dose of 600 ppm through drinking water for
-
Ameliorative effects of quercetin on sodium fluoride-induced oxidative stress in rat's kidney
OBJECTIVE: The in vivo nephroprotective effect of quercetin against sodium fluoride (NaF)-induced damage was studied. METHODS: Renal injury was induced by daily administration of NaF (600 ppm) through drinking water for 1 week. The levels of reduced glutathione (GSH), lipid peroxidation as well as superoxide dismutase and catalase activity of
-
Mitigating effects of some antidotes on fluoride and arsenic induced free radical toxicity in mice ovary
The effects of oral administration of sodium fluoride (NaF) and/or arsenic trioxide (As(2)O(3)) (5 mg and 0.5 mg/kg body weight, respectively) for 30 days were investigated on free radical induced toxicity in the mouse ovary. The reversibility of the induced effects after withdrawal of NaF+As(2)O(3) treatment and by administration of
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
-
Fluoridation of drinking water and chronic kidney disease: Absence of evidence is not evidence of absence
A fairly substantial body of research indicates that patients with chronic renal insufficiency are at an increased risk of chronic fluoride toxicity. Patients with reduced glomerular filtration rates have a decreased ability to excrete fluoride in the urine. These patients may develop skeletal fluorosis even at 1 ppm fluoride in the drinking water.
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
Related FAN Content :
-