Abstract
Although there are many studies on effect of fluoride on trace elements in experimental animals, few studies exist on serum trace elements levels in patients with endemic fluorosis. We aimed to determine the serum levels of trace elements including serum copper (Cu), zinc (Zn), and serum levels of minerals including calcium (Ca), phosphorus (P), magnesium (Mg), sodium (Na), potassium (K) in patients with endemic fluorosis. The study group consisted of 30 patients with endemic fluorosis (17 females, 13 males, mean age 33.53±9.85 years). An age, gender, and body mass index matched 30 healthy volunteers comprised control group (21 females, ten males with a mean age 33.93±7.39 years). Urine fluoride levels of chronic fluorosis patients were significantly higher than that of control subjects as expected (1.92±0.10 mg/l vs. 0.41±0.09 mg/l, respectively; P<0.001). Serum Cu levels (89.14±16.77 ?g/dL vs. 102.69±25.04 ?g/dL, respectively, P=0.017), serum Zn levels (77.98±20.58 ?g/dL vs. 94.57±35.87?g/dL, respectively, P=0.032), and serum Mg levels (1.92±0.18 mg/dL vs. 2.07±0.31 mg/dL, respectively, p=0.022) was significantly lower in chronic fluorosis patients than in controls. There were no statistically significant differences between the fluorosis group and control group with respect to serum levels of Na, K, Ca, and P. We concluded that chronic fluorosis is associated with reduced serum levels of Cu, Zn, and Mg.
-
-
Changes in basic metabolic elements associated with the degeneration and ossification of ligamenta flava
OBJECTIVE: To determine the association between levels of basic metabolic elements and degeneration and ossification of the ligamentum flavum (LF). SUBJECTS: Fourteen consecutive patients with degenerative lumbar stenosis, 11 with ossification of the thoracic ligamenta flava, and 11 control subjects. METHODS: The basic elements of calcium (Ca), phosphorus (P), magnesium (Mg), zinc
-
Influence of supplementary vitamins and minerals on lipid peroxidation and redox state in heart, kidney and liver of rats exposed to fluoride.
The effect of fluoride (F) and supplementary vitamins and minerals on lipid peroxidation (LPO) and redox state (RS) in heart , kidney and liver of 40 (4 groups of 10) male Wistar rats were studied. One group of rats was left untreated as control, group 1 was received 5 mg/l
-
Osteoporosis--an early radiographic sign of endemic fluorosis.
Radiological investigation of skeletal fluorosis was carried out among the inhabitants from two areas where the fluoride content of water was high, using both conventional radiography and radiographic measurements of bone mineral content (BMC). Of 139 cases in the first group, 68 presented bone abnormalities while 21 of 54 cases in the
-
Child Skeletal Fluorosis from Indoor Burning of Coal in Southwestern China
Objectives. We assess the prevalence and pathogenic stage of skeletal fluorosis among children and adolescents residing in a severe coal-burning endemic fluorosis area of southwest China. Methods. We used a cross-sectional design. A total of 1,616 students aged between 7 and 16 years in Zhijin County, Guizhou, China in late 2004
-
Sketetal changes in endemic fluorosis
Summary 1. The skeletal changes in endemic fluorosis are described from an area of the Punjab where the fluorine content of water and soil is very high. 2. A detailed description of a fluorotic skeleton is given, with its various anthropometric measurements. 3. The vertebral changes demonstrated the pathogenesis of the neurological complications
Related Studies :
-
-
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
-
Exposure Pathways Linked to Skeletal Fluorosis
Excessive fluoride exposure from any source -- and from all sources combined -- can cause skeletal fluorosis. Some exposure pathways , however, have been specifically identified as placing individuals at risk of skeletal fluorosis. These exposure pathways include: Fluoridated Water for Kidney Patients Excessive Tea Consumption High-Fluoride Well Water Industrial Fluoride Exposure Fluorinated Pharmaceuticals (Voriconazole
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride Magnifies Impact of Repetitive Stress on Joints
Research has repeatedly found that fluoride's effect on the skeleton is most pronounced in the bones and joints that undergo the greatest strain. Indeed, both the symptoms of fluorosis (i.e., joint pain and stiffness) as well as the radiological findings (e.g., exostoses, interosseuous membrane calcification) have been found to occur earliest, and most severely, in the joints
-
Variability in Radiographic Appearance of Skeletal Fluorosis
Osteosclerosis (dense bone) is the bone change typically associated with skeletal fluorosis, particularly in the axial skeleton (spine, pelvis, and ribs). Research shows, however, that skeletal fluorosis produces a spectrum of bone changes, including osteomalacia, osteoporosis, exostoses, changes resulting from secondary hyperparathyroidism, and combinations thereof. Although the reason for this radiographic variability is not yet fully understood, it is believed to relate to the dose of fluoride consumed, the individual's nutritional status, exposure to aluminum, genetic susceptibility, presence of kidney disease, and area of the skeleton examined.
Related FAN Content :
-