Abstract
To test whether low-fluoride brick tea can prevent the occurrence of fluorosis, rats had access only to a specially prepared low-fluoride brick tea for 1 year. The daily fluoride intake, fluoride metabolism, tissue distribution and development of tooth fluorosis were observed at 4-monthly intervals, at the end of months 4, 8 and 12, respectively. Rats drinking ordinary brick tea (F- 503.5 mg/kg) served as control. The daily intake of fluoride in the ordinary brick tea group was 0.3 mg, and this group developed dental fluorosis characterized as brown and white horizontal marks at the end of month 8, and white chalky dental fluorosis developed at the end of month 12. The total incidence was 75%. In contrast, the daily fluoride intake of the low-fluoride brick tea (F- 210 mg/kg) group was 0.19 mg, and this group did not develop any signs of dental fluorosis. Fluoride distribution was mainly retained in the bone tissue, and about half of the absorbed fluoride was excreted via urine and feces. The results suggest that this low-fluoride brick tea did not induce fluorosis in rats and can be used as an effective control measure for humans.
-
-
Toxicokinetics and metabolism deteriorated by acute nephrotoxicity after a single intravenous injection of hydrofluoric acid in rats
OBJECTIVES: This study was designed to investigate the early dynamic state of hydrofluoric acid (HFA) in blood and urine as a model of accidental occupational exposure to a subtoxic dose of HFA. It was also aimed at determining the relationship between the kinetics and harmful effects of HFA on the
-
Effect of aging on animal response to chronic fluoride exposure
This study was conducted to test the hypothesis that physiological changes which occur during aging increase the biological impact of fluoride and reduce the threshold of safe fluoride exposure. Four groups of rats were fed a low-fluoride diet (< 1.2 ppm) ad libitum and received 0, 5, 15, or 50
-
Strong acute toxicity, severe hepatic damage, renal injury and abnormal serum electrolytes after intravenous administration of cadmium fluoride in rats
Cadmium fluoride (CdF) is commonly used as an insulator for ulta high speed mass telecommunications equipment, and there is a considerable risk that industrial workers will inhale CdF particles. Despite the possibility that acute exposure can cause harmful systemic effects, there are no studies to date that address the health
-
Role of Some Natural Antioxidants in the Modulation of Some Proteins Expressions against Sodium Fluoride-Induced Renal Injury.
Background: The aim of the present work is to find the effects of N-acetylcysteine (NAC) and/or thymoquinone (THQ) in the protection against acute renal injury induced by sodium fluoride (NaF). Method: Rats were distributed into five groups: G1 was normal (control), G2 was intoxicated with 10mg/kg NaF i.p., G3 was treated
-
Reproductive and developmental toxicity of degradation products of refrigerants in experimental animals
The present paper summarizes the results of animal studies on the reproductive and developmental toxicity of the degradation products of refrigerants, including trifluoroacetic acid (TFA), carbon dioxide (CO(2)), carbon monoxide (CO), carbonyl fluoride (CF), hydrogen fluoride (HF) and formic acid (FA). Excessive CO(2) in the atmosphere is testicular and reproductive
Related Studies :
-
-
-
Fluoridation of drinking water and chronic kidney disease: Absence of evidence is not evidence of absence
A fairly substantial body of research indicates that patients with chronic renal insufficiency are at an increased risk of chronic fluoride toxicity. Patients with reduced glomerular filtration rates have a decreased ability to excrete fluoride in the urine. These patients may develop skeletal fluorosis even at 1 ppm fluoride in the drinking water.
-
Kidney: A potential target for fluoride toxicity
The kidneys are the organ responsible for clearing fluoride from the body. In the process of doing so, the kidneys are exposed to concentrations of fluoride that exceed, by a factor of 50, the concentration of fluoride in human blood. As such, the kidney have long been considered a potential
-
Fluoride & Kidney Stones
It has long been suspected that fluoride may contribute to the formation of kidney stones. This suspicion has recently gained support from a study of an American man with skeletal fluorosis. According to the authors: "A new, important, medical problem (that seemed temporally related to cessation of fluoride exposure and subsequent negative calcium
-
Fluoride Gels & Kidney Function
Scientists have found that the application of "Fluoride Gels" at the dental office causes very high spikes in the blood fluoride level. The high spikes in blood fluoride levels are a result of three factors: the high concentration of fluoride in the gel (= 12.3 mg of fluoride in each
-
Fluoride as a Cause of Kidney Disease in Animals
Because the kidney is exposed to higher concentrations of fluoride than all other soft tissues (with the exception of the pineal gland), there is concern that excess fluoride exposure may contribute to kidney disease - thus initiating a "vicious cycle" where the damaged kidneys increase the accumulation of fluoride, causing in
Related FAN Content :
-