Abstract
A survey was done of the prevalence of dental fluorosis among children aged 7-16 years and the occurrence of skeletal fluorosis among adults aged 40-60 years living in regions in Senegal where fluoride concentrations in the drinking water ranged from less than 0.1 to 7.4 mg/l. In the area where the fluoride concentration in the drinking water was 1.1 mg/l milder forms of dental fluorosis were found, the prevalence being 68.5%. In areas where fluoride concentrations exceeded 4 mg/l the prevalence of dental fluorosis reached 100%. Kyphosis was very prevalent among a community whose drinking water contained 7.4 mg/l fluoride. Radiographs of the vertebral column, hand, and wrist of 3 adults with kyphosis confirmed the diagnosis of skeletal fluorosis. High sweat loss and a high intake of water because of the hot weather may account for the finding. The present World Health Organisation guideline for the upper limit of fluoride concentration in drinking water may be unsuitable for countries with a hot, dry climate.
-
-
Association of dental and skeletal fluorosis with calcium intake and vitamin D concentrations in adolescents from a region endemic for fluorosis
Objective: Patan, is a semi urban area in Gujarat, India where fluorosis is endemic (Fluoride concentration in ground water 1.96–10.85 ppm, Patel et al., 2008). Exposure to fluoride is likely to be higher in lower socio-economic class (SEC) due to lack of access to bottled water. Calcium intake and vitamin
-
Effects of smoking, use of aluminum utensils, and tamarind consumption on fluorosis in a fluorotic village of Andhra Pradesh, India
A field study was undertaken to determine effects of tamarind, the use of aluminium (Al) cooking utensils, and smoking on dental and skeletal fluorosis in the randomly selected fluoride (F) endemic village of Buttlapally in the Nalgonda District, Andhra Pradesh, India, where the F level in the drinking water is
-
Epidemiological, clinical, and biochemical study of endemic dental and skeletal fluorosis in Punjab
The incidence of dental fluorosis in 46,000 children in the Punjab was assessed and compared with the fluoride content of their water supplies. Ten villages were selected for more detailed studies of skeletal as well as dental fluorosis. Factors other than the fluoride content of the drinking water which were found to influence
-
Child Skeletal Fluorosis from Indoor Burning of Coal in Southwestern China
Objectives. We assess the prevalence and pathogenic stage of skeletal fluorosis among children and adolescents residing in a severe coal-burning endemic fluorosis area of southwest China. Methods. We used a cross-sectional design. A total of 1,616 students aged between 7 and 16 years in Zhijin County, Guizhou, China in late 2004
-
Spatial distribution of endemic fluorosis caused by drinking water in a high-fluorine area in Ningxia, China.
Endemic fluorosis is widespread in China, especially in the arid and semi-arid areas of northwest China, where endemic fluorosis caused by consumption of drinking water high in fluorine content is very common. We analyzed data on endemic fluorosis collected in Ningxia, a typical high-fluorine area in the north of China.
Related Studies :
-
-
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Mayo Clinic: Fluoridation & Bone Disease in Renal Patients
The available evidence suggests that some patients wtih long-term renal failure are being affected by drinking water with as little as 2 ppm fluoride. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers and if fluoride is indeed the cause. It would seem prudent, therefore, to monitor the fluoride intake of patients with renal failure living in high fluoride areas.
-
Racial Disparities in Dental Fluorosis
In 2005, the Centers for Disease Control published the results of a national survey of dental fluorosis conducted between 1999 and 2002. According to the CDC, black children in the United States have significantly higher rates of dental fluorosis than either white or Hispanic children. This was not the first time that black children were found to suffer higher rates of dental fluorosis. At least five other studies -- dating as far back as the 1960s -- have found black children in the United States are disproportionately impacted by dental fluorosis.
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
Related FAN Content :
-