Abstract
OBJECTIVES: The purpose of this study was to compare hip fracture hospitalization rates between a fluoridated and a non-fluoridated community in Alberta, Canada: Edmonton, which has had fluoridated drinking water since 1967, and Calgary, which considered fluoridation in 1991 but is currently revising this decision.
METHODS: Case subjects were all individuals aged 45 years or older residing in Edmonton or Calgary who were admitted to hospitals in Alberta between January 1, 1981, and December 31, 1987, and who had a discharge diagnosis of hip fracture. Edmonton rates were compared with Calgary rates, with adjustment for age and sex using the Edmonton population as a standard.
RESULTS: The hip fracture hospitalization rate for Edmonton from 1981 through 1987 was 2.77 per 1000 person-years. The age-sex standardized rate for Calgary was 2.78 per 1000 person-years. No statistically significant difference was observed in the overall rate, and only minor differences were observed within age and sex subgroups, with the Edmonton rates being higher in males.
CONCLUSIONS: These findings suggest that fluoridation of drinking water has no impact, neither beneficial nor deleterious, on the risk of hip fracture.
-
-
Hip fracture incidence before and after the fluoridation of the public water supply, Rochester, Minnesota
Recent ecological comparison studies have suggested a positive association between fluoridation and hip fracture. Using data from the Rochester Epidemiology Project, we found the incidence of hip fracture for the 10 years before the fluoridation of the Rochester, Minn, public water supply was 484 per 100,000, compared with 450 per
-
Non-Endemic Skeletal Fluorosis: Causes And Associated Secondary Hyperparathyroidism (Case Report and Literature Review).
Highlights Fluorocarbon “huffing” is an under-appreciated cause of skeletal fluorosis (SF) We present a SF case with hyperparathyroidism, osteosclerosis, and osteomalacia SF may go undetected due to variation in symptoms, radiology, and biochemistry Dietary calcium, prior bone health, and skeletal F exposure influence SF features SF is common in
-
The effect of tamoxifen and fluoride on bone mineral density, biomechanical properties and blood lipids in ovariectomized rats
The most important aspect of therapy with fluoride and tamoxifen concerns its influence on bone tissue and lipid metabolism. The aim of the study was to evaluate the effect of tamoxifen and natrium fluoride (NaF) on bone metabolism, biochemical properties and blood lipids levels in ovariectomized rats. The study was
-
Use of toenail fluoride levels as an indicator for the risk of hip and forearm fractures in wome
The relation between fluoride intake and risk of osteoporotic fractures remains unclear. The lack of individual measures of long-term fluoride intake has limited epidemiologic studies. We used toenail fluoride in this study as a measure of long-term intake to evaluate the relation between fluoride intake and subsequent risk of hip
-
Effect of fluoride on collagen synthesis in the rat
Thirty-six young rats were used to determine the effect of the fluoride on collagen synthesis in healing of fracture. Eighteen rats received 100 ppm fluoride per day, the other 18 were not given fluoride and were used as controls. Then the tibiae of the 36 rats were successively fractured and
Related Studies :
-
-
-
In Vitro Studies on Fluoride & Bone Strength
The "in vitro" research on fluoride and bone strength confirms what has repeatedly been found in animal and human studies: the more fluoride a bone has, the weaker the bone becomes. In an in vitro bone study, the researcher directly exposes a human or animal bone to a fluoride solution
-
Fluoride in Water & Bone Fracture
Current epidemiological evidence indicates that the margin of safety between the level of fluoride in water that does, and does not, increase the risk of fracture is insufficiently large to protect all members of society from fluoride-induced damage to bone.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Mechanisms by which fluoride may reduce bone strength
Based on a large body of animal and human research, it is now known that fluoride ingestion can reduce bone strength and increase the rate of fracture. There are several plausible mechanisms by which fluoride can reduce bone strength. As discussed below, these mechanisms include: Reduction in Cortical Bone Density De-bonding of
Related FAN Content :
-