Abstract
This in vitro study was conducted to evaluate the effect of fluoride (F) on oxidative damage and DNA-protein crosslinks (DPCs) in TM3 mouse Leydig cells. Sodium fluoride at concentrations of 0, 200, 400, 600, and 800 ?mol/L was administered to TM3 mouse Leydig cells for 24 hr. The activities of the antioxidant enzymes glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT), along with the contents of glutathione (GSH) and malondialdehyde (MDA), plus the levels of DPCs were determined. The results showed that F administration significantly altered the levels of all of these factors compared to those of the control. The activities of antioxidant enzymes and GSH contents showed a dose-dependent decrease, the levels of lipid peroxidation and DPCs showed a dose-dependent increase. Combining all the data, the results suggest that F induces the oxidation hyperirritability in cultures of TM3 mouse Leydig cells, resulting in DPCs.
-
-
Ameliorative effects of N-acetylcysteine on fluoride-induced oxidative stress and DNA damage in male rats' testis
This study was to elucidate DNA damage in rats treated with sodium fluoride (NaF) by performing 8-Hydroxy-2-deoxyguanosine (8-OHdG) immunohistochemical staining assays on seminiferous tubules of rats' testis, and also to evaluate the protective effects of N-acetylcysteine (NAC) on spermatogenesis. Male Sprague Dawley (SD) rats were exposed to a single dose
-
Toxicity assessment of sodium fluoride in Drosophila melanogaster after chronic sub-lethal exposure
Sodium fluoride (NaF), one of the most frequently used fluoride compound is composed of Na+ and F-. Apart from its use in water fluoridation, NaF also acts as a major component for different dental products like toothpastes, gels and mouth rinses etc. The present study was carried out to explore the toxic impact of chronic
-
Co-exposure to arsenic and fluoride on oxidative stress, glutathione linked enzymes, biogenic amines and DNA damage in mouse brain.
We studied the effects of combined exposure to arsenic and fluoride on (i) brain biogenic amines, oxidative stress and its correlation with glutathione and linked enzymes; (ii) alterations in the structural integrity of DNA; and (iii) brain and blood arsenic and fluoride levels. Efficacy of alpha-tocopherol in reducing these changes
-
Effect of fluoride intoxication on endometrial apoptosis and lipid peroxidation in rats: role of vitamins E and C.
Fluoride is a strong, hard anion and cumulative toxic agent. The effect of fluoride intoxication on lipid peroxidation in endometrial tissue and the protective effects of combinations of vitamins E and C in rats were studied. Additionally, the apoptotic changes in endometrial tissue were examined. Experimental groups were as follows:
-
Morphometry of buccal mucosal cells in fluorosis--a new paradigm
STUDY BACKGROUND: Fluorosis is one of the manifestations of chronic poisoning from long-term exposure to high levels of fluoride. An estimated 62 million people in 17 states in India are affected with dental and skeletal fluorosis. OBJECTIVE: To evaluate the cytological morphology of exfoliated oral mucosal cells among various stages of
Related Studies :
-
-
-
Fluoride's Effect on Male Reproductive System -- The "Sprando/Collins" Anomaly
In contrast to the findings of over 60 animal studies from other research teams, a series of studies by FDA researchers Sprando & Collins reported virtually no evidence of reproductive toxicity among animals treated with very high levels of fluoride exposure. The reasons for this discrepancy remains unclear. Excerpts from Sprando/Collins' Studies: "This study
-
Fluoride's Effect on the Male Reproductive System -- In Vitro Studies
Carefully controlled in vitro studies have found that direct exposure of fluoride to the testes or semen inhibits testosterone production and damages sperm. While researchers have known since the 1930s that mega concentrations of fluoride can completely (but reversibly) immobilize sperm, it was not until the 1970s and 1980s that researchers found that relatively modest concentrations of fluoride could cause damage prior to complete immobilization.
-
Fluoride's Effect on Male Reproductive System: Animal Studies
Over 60 studies on animals (including rats, mice, roosters, and rabbits) have found that fluoride adversely impacts the male reproductive system. These studies have repeatedly found the following effects: (1) decreases in testosterone levels; (2) reduced sperm motility; (3) altered sperm morphology; (4) reduced sperm quantity; (5) increased oxidative stress; (6) and reduced capacity to breed.
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
-
Fluoride's Effect on Male Reproductive System - Human Studies
Consistent with in vitro and animal research, studies of human populations have reported associations between fluoride exposure and damage to the male reproductive system. Most notably, a scientist at the Food & Drug Administration reported in 1994 that populations in the United States with more than 3 ppm fluoride in their water had lower "total fertility rates" than populations with lower fluoride levels.
Related FAN Content :
-