Abstract
Biochemical alterations in the brain produced during experimental fluorosis were studied. Albino rabbits of both sexes were administered sodium fluoride solutions in the concentrations of 5, 10, 20, and 50 mg/kg body wt/day by subcutaneous injection for 100 days. The control rabbits were given 1 cc distilled water/kg body weight/day for the same length of time. In fluoride treated rabbits the brain showed significant decline (P <0.001) in soluble, basic total protein and free amino acid levels. RNA content rapidly decreased (P <0.001) in the brains of experimental animals compared to the controls. However, in male animals treated with 5 and 10 mg fluoride no statistically significant differences in RNA content of brain were observed. The depletion of proteins produced degenerative changes in purkinje cells of the cerebellar cortex. These changes in the brain lead to paralysis of limbs in fluoridated animals.
-
-
Fluoride-induced brain damages in suckling mice
In order to reveal mechanisms of brain damages resulted from fluoride toxicity, we treated adult female mice of Swiss Albinos strain by 500 ppm NaF (226 ppm F?) in their drinking water from the 15th day of pregnancy until the day 14 after delivery. All mice were sacrificed on day 14 after
-
Effects of fluoride on the tissue oxidative stress and apoptosis in rats: biochemical assays supported by IR spectroscopy data.
The mechanism underlying the toxicity of fluoride still remains unknown. To investigate the effects of different doses of fluoride on blood and tissue oxidative stress and apoptosis, we exposed male rats to three doses of fluoride (10, 50 and 100ppm in drinking water) for a period of 10 weeks. The
-
Interplay of glia activation and oxidative stress formation in fluoride and aluminium exposure.
BACKGROUND: Oxidative stress formation is pivotal in the action of environmental agents which trigger the activation of glial cells and neuroinflammation to stimulate compensatory mechanisms aimed at restoring homeostasis. AIM: This study sets to demonstrate the interplay of fluoride (F) and aluminium (Al) in brain metabolism. Specifically, it reveals how oxidative
-
Molecular mechanism of brain impairment caused by drinking-acquired fluorosis and selenium intervention
This study investigated the molecular mechanism of brain impairment induced by drinking fluoridated water and selenium intervention. Results showed that the learning and memory of rats in NaF group significantly decreased. Moreover, the number of apoptotic cells, the expression levels of Cytc mRNA and protein, and the expression levels of
-
Effects of fluoride on neurotransmitters in brain regions of rats exposed to fluoride in drinking water for two months
Fluoride has long been known as an environmental pollutant. Toxic neurological effects of fluoride have been reported in experimental animals by oral exposure to fluoride, but effects on neural transmitters are not clear. Adult male rats were administered fluoride via their drinking water at concentrations of 0, 50, 100, and 200 ppm (as fluoride
Related Studies :
-
-
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride & IQ: 68 Studies
As of February 2021, a total of 76 studies have investigated the relationship between fluoride and human intelligence. Of these investigations, 68 studies have found that elevated fluoride exposure is associated with reduced IQ in humans, while over 60 animal studies have found that fluoride exposure impairs the learning and/or
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
Related FAN Content :
-