Abstract
Improved the general condition of chronic fluorosis but had no effect on dental fluorosis enhanced the excretion of fluorine and lowered the fluorine content of serum and bone which has been raised during fluorine intoxication; increased serum vitamin C and protected collagen as manifested by declin[e] of urinary hydroxyproline; inhibited lipid peroxidation induced by fluorosis through raising vitamin E level and glutathione conent, glutathione peroxidase and superoxide dismutase activities of blood, liver and kidney so that lipid peroxide level in these tissues was lowered; repaired liver and kidney damages of fluorotic origin revealed by the lowering of serum GPT, liver triglycerides and urine gamma-GT.
-
-
Investigation on the effect of Hibiscus Sabdariffa calyxethanolic extract on sodium fluoride induced fluorosis in rats
Flu o rosis was induced by the oral administration of Sodium Fluoride (10mg/kg) for 30 days. On 30th day the Flurosis was confirmed by studying the level of fluorine in serum and urine. Treatment was started from 30th day to 60th day by ingesting Hibiscus Sabdariffa calyxethanolic extract 200 mg/kg and
-
Protective effect of Tamarindus indica fruit pulp extract on collagen content and oxidative stress induced by sodium fluoride in the liver and kidney of rats
Fluorosis is a serious public health problem in many parts of the world. The generation of reactive oxygen species and lipid peroxidation has been considered to play an important role in the pathogenesis of chronic fluoride toxicity. The present study was undertaken to evaluate the protective effect of Tamarindus indicafruit pulp extract
-
Ameliorative effect of tamarind leaf on fluoride-induced metabolic alterations
OBJECTIVES: Fluoride is a serious health hazard across several nations, and chronic intake of fluoride deranges the carbohydrate, lipid and antioxidant metabolism in general. As there are limited remedial measures to prevent fluorosis, we investigated the role of tamarind leaf as a food supplement in restoration of carbohydrate, lipid and
-
Maize purple plant pigment protects against fluoride-induced oxidative damage of liver and kidney in rats
Anthocyanins are polyphenols and well known for their biological antioxidative benefits. Maize purple plant pigment (MPPP) extracted and separated from maize purple plant is rich in anthocyanins. In the present study, MPPP was used to alleviate the adverse effects generated by fluoride on liver and kidney in rats. The results
-
Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat
BACKGROUND: Sodium fluoride (NaF) intoxication is associated with oxidative stress and altered antioxidant defense mechanism. The present study was carried out to evaluate the potential protective role of blackberry and quercetin (Q) against NaF-induced oxidative stress and histological changes in liver, kidney, testis and brain tissues of rats. METHODS: The rats
Related Studies :
-
-
-
Fluoride & Kidney Stones
It has long been suspected that fluoride may contribute to the formation of kidney stones. This suspicion has recently gained support from a study of an American man with skeletal fluorosis. According to the authors: "A new, important, medical problem (that seemed temporally related to cessation of fluoride exposure and subsequent negative calcium
-
Kidney: A potential target for fluoride toxicity
The kidneys are the organ responsible for clearing fluoride from the body. In the process of doing so, the kidneys are exposed to concentrations of fluoride that exceed, by a factor of 50, the concentration of fluoride in human blood. As such, the kidney have long been considered a potential
-
Fluoride as a Cause of Kidney Disease in Animals
Because the kidney is exposed to higher concentrations of fluoride than all other soft tissues (with the exception of the pineal gland), there is concern that excess fluoride exposure may contribute to kidney disease - thus initiating a "vicious cycle" where the damaged kidneys increase the accumulation of fluoride, causing in
-
Fluoride Exposure Increases Metabolic Requirement for Magnesium
Fluoride's toxicity is significantly enhanced in the presence of nutritional deficiencies. Similarly, fluoride exposure increases the body's requirement for certain nutrients. An individual with a high intake of fluoride, for example, will need a proportional increase in calcium to avoid the mineralization defects (e.g., osteomalacia) that fluoride causes to bone
-
Fluoride as a Cause of Kidney Disease in Humans
Because the kidney is exposed to higher concentrations of fluoride than all other soft tissues (with the exception of the pineal gland), there is concern that excess fluoride exposure may contribute to kidney disease - thus initiating a "vicious cycle" where the damaged kidneys increase the accumulation of fluoride, causing
Related FAN Content :
-