Abstract
17 rats with chronic fluorosis induced by prolonged drinking of water containing 50 ppm fluorine and 17 rats drinking low-fluorine water served as control were used to study the DNA and RNA contents of heart, liver and kidney. The findings suggest that excessive accumulation of fluorine can suppress the synthesis of RNA of heart, liver and kidney and reduce its content accordingly but can not influence the DNA synthesis of mature organs in vivo.
-
-
Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat
BACKGROUND: Sodium fluoride (NaF) intoxication is associated with oxidative stress and altered antioxidant defense mechanism. The present study was carried out to evaluate the potential protective role of blackberry and quercetin (Q) against NaF-induced oxidative stress and histological changes in liver, kidney, testis and brain tissues of rats. METHODS: The rats
-
Conceivable amelioration of NaF-induced toxicity in liver, kidney and brain of chicken by black tea extract: an in vitro study.
Sodium fluoride (NaF) toxicity on enzymatic and non-enzymatic oxidative stress markers of chicken liver, kidney and brain homogenate in in vitro condition where studied in present investigation. We studied alteration in the activity of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO) and glutathione (GSH) content to study oxidative stress.
-
[Effects of selenium and zinc on the DNA damage caused by fluoride in pallium neural cells of rats].
To investigate the effects of fluoride on DNA damage as well as the effects of selenium and zinc against fluoride respectively or jointly in pallium neural cells of rats, single cell gel electrophoresis was used to detect the DNA damage of neural cells prepared in vitro. The results showed that
-
Silymarin and quercetin abrogates fluoride induced oxidative stress and toxic effects in rats
Flavonoids have been extensively studied and reported to possess widespread biological activities, including antioxidant and chelating properties. They have been proposed to exert beneficial effects in a multitude of diseased states generated due to oxidative stress. Therapeutic efficacy of oral administration of Silymarin and Quercetin after fluoride exposure (50 ppm
-
A possible mechanism for combined arsenic and fluoride induced cellular and DNA damage in mice
Arsenic and fluoride are major contaminants of drinking water. Mechanisms of toxicity following individual exposure to arsenic or fluoride are well known. However, it is not explicit how combined exposure to arsenic and fluoride leads to cellular and/or DNA damage. The present study was planned to assess (i) oxidative stress
Related Studies :
-
-
-
Fluoride & Arteriosclerosis
Healthy arteries are flexible and elastic, allowing efficient transfer of blood and nutrients from the heart to the rest of the body. Arteriosclerosis refers to a stiffening of the arteries, including loss of elasticity. This is a slow, progressive disease that may begin early in life from damage to the
-
Fluoride as a Cause of Kidney Disease in Humans
Because the kidney is exposed to higher concentrations of fluoride than all other soft tissues (with the exception of the pineal gland), there is concern that excess fluoride exposure may contribute to kidney disease - thus initiating a "vicious cycle" where the damaged kidneys increase the accumulation of fluoride, causing
-
Kidney: A potential target for fluoride toxicity
The kidneys are the organ responsible for clearing fluoride from the body. In the process of doing so, the kidneys are exposed to concentrations of fluoride that exceed, by a factor of 50, the concentration of fluoride in human blood. As such, the kidney have long been considered a potential
-
Fluoride as a Cause of Kidney Disease in Animals
Because the kidney is exposed to higher concentrations of fluoride than all other soft tissues (with the exception of the pineal gland), there is concern that excess fluoride exposure may contribute to kidney disease - thus initiating a "vicious cycle" where the damaged kidneys increase the accumulation of fluoride, causing in
-
Fluoridation of drinking water and chronic kidney disease: Absence of evidence is not evidence of absence
A fairly substantial body of research indicates that patients with chronic renal insufficiency are at an increased risk of chronic fluoride toxicity. Patients with reduced glomerular filtration rates have a decreased ability to excrete fluoride in the urine. These patients may develop skeletal fluorosis even at 1 ppm fluoride in the drinking water.
Related FAN Content :
-