Abstract
The toxicity of sodium fluoride (NaF) to female fertility is currently recognized; however, the mechanisms are unclear. Previously, we reported a reduction in successful pregnancy rates, ovarian atrophy and dysfunction following exposure to NaF. The purpose of this study was to elucidate the underlying molecular mechanisms. Female Sprague-Dawley rats (10 rats/group) received 100 or 200mg/L NaF in their drinking water for 6 months or were assigned to an untreated control group. Apoptotic indices and oxidative stress indicators in blood and ovarian tissue were analyzed following sacrifice. The results confirmed the NaF-induced ovarian apoptosis, with concomitant activation of oxidative stress. Further investigations in ovarian granular cells showed that exposure to NaF activated extracellular regulated protein kinase (ERK) and c-Jun NH2 kinase (JNK), disrupting the ERK and JNK signaling pathways, while p38 and PI3K remained unchanged. These data demonstrated that oxidative stress may play a key role in NaF-induced ovarian dysfunction by activating the apoptotic ERK and JNK signaling pathways.
-
-
Fluoride-induced oxidative stress and apoptosis are involved in the reducing of oocytes development potential in mice.
The present study was conducted to investigate the mechanisms of excessive-fluoride-induced reduction of oocyte development potential in mice. The development morphology of oocyte and the changes of pathomorphology in ovary were observed. The protein expression levels of apoptosis factors, including Bax, Bcl-2, casepase-3, casepase-9 and cytochrome c, and the mRNA
-
Fluoride Impairs Ovary Development by Affecting Oogenesis and Inducing Oxidative Stress and Apoptosis in Female Zebrafish (Danio Rerio).
Highlights Fluoride exposure decreased FSH, LH and VTG levels in ovary of zebrafish. Fluoride exposure altered the transcriptional profiles of oogenesis-related genes. Fluoride exposure increased ROS production in ovary of zebrafish. Fluoride exposure induces oxidative stress in ovary of zebrafish. Fluoride exposure induces apoptosis through both extrinsic and intrinsic
-
Mitigating effects of some antidotes on fluoride and arsenic induced free radical toxicity in mice ovary
The effects of oral administration of sodium fluoride (NaF) and/or arsenic trioxide (As(2)O(3)) (5 mg and 0.5 mg/kg body weight, respectively) for 30 days were investigated on free radical induced toxicity in the mouse ovary. The reversibility of the induced effects after withdrawal of NaF+As(2)O(3) treatment and by administration of
-
Toxic effects of fluoride on reproductive ability in male rats: sperm motility, oxidative stress, cell cycle, and testicular apoptosis.
To investigate the effects of sodium fluoride (NaF) on sperm motility, oxidative stress, and apoptosis in the testes, male Wistar rats were exposed to 1.0, 2.0, and 3.0 mg NaF/kg bw/day by intragastric gavage for 90 days. Sperm motility was significantly inhibited, especially at the lower F intake level. Significant
-
Effect of fluoride on endocrine tissues and their secretory functions - review.
Highlights Fluoride induce e.g. oxidative stress, apoptosis and inflammation in endocrine tissues. Fluoride causes changes in the level of hormones released from endocrine tissues. Fluoride causes changes in the morphology of endocrine tissues. Abstract The effects of fluoride on endocrine tissues has not been sufficiently explored to date. The current body of
Related Studies :
-
-
-
Fluoride's Effect on the Male Reproductive System -- In Vitro Studies
Carefully controlled in vitro studies have found that direct exposure of fluoride to the testes or semen inhibits testosterone production and damages sperm. While researchers have known since the 1930s that mega concentrations of fluoride can completely (but reversibly) immobilize sperm, it was not until the 1970s and 1980s that researchers found that relatively modest concentrations of fluoride could cause damage prior to complete immobilization.
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoride's Effect on Male Reproductive System -- The "Sprando/Collins" Anomaly
In contrast to the findings of overĀ 60 animal studiesĀ from other research teams, a series of studies by FDA researchers Sprando & Collins reported virtually no evidence of reproductive toxicity among animals treated with very high levels of fluoride exposure. The reasons for this discrepancy remains unclear. Excerpts from Sprando/Collins' Studies: "This study
-
Fluoride's Effect on Male Reproductive System - Human Studies
Consistent with in vitro and animal research, studies of human populations have reported associations between fluoride exposure and damage to the male reproductive system. Most notably, a scientist at the Food & Drug Administration reported in 1994 that populations in the United States with more than 3 ppm fluoride in their water had lower "total fertility rates" than populations with lower fluoride levels.
-
Fluoride's Effect on Male Reproductive System: Animal Studies
Over 60 studies on animals (including rats, mice, roosters, and rabbits) have found that fluoride adversely impacts the male reproductive system. These studies have repeatedly found the following effects: (1) decreases in testosterone levels; (2) reduced sperm motility; (3) altered sperm morphology; (4) reduced sperm quantity; (5) increased oxidative stress; (6) and reduced capacity to breed.
Related FAN Content :
-