Abstract
The effects of sodium fluoride (NaF) exposure on the induction of oxidative stress and alteration of gene expressions were studied in the liver of female zebrafish (Danio rerio). Zebrafish, exposed to 15 ppm NaF for 30 and 90 days, exhibited liver histopathology including hyperplassia, cytoplasmic degeneration and nuclear fragmentation. Antioxidant enzyme (GST, CAT, SOD) activities in the liver altered significantly; the mRNA levels for the genes encoding antioxidant proteins, such as Gst, Cat, Cu/ZnSod, MnSod as well as Gpx were significantly upregulated at 30 days NaF-treatment along with the stress marker gene Hsp70 and phase I detoxyfying gene Cyp1A1. Moreover, the transcriptional pattern of Ucp2, related to mitochondrial reactive oxygen species (ROS) production, upregulated significantly at 90 days NaF-treatment. ROS generation was evidensed by fluoroscence microscopy. The results of this study will help to understand the mechanism of oxidative stress induced by NaF in fish.
-
-
Evaluation of serum lipoprotein and tissue antioxidant levels in sheep with fluorosis
The aim of this study was to evaluate serum lipoprotein and tissue antioxidant levels of sheep with and without fluorosis living in a volcanic area of Turkey. Fifteen Akkaraman sheep with fluorosis in the A?ri region north of Lake Van and 10 Akkaraman sheep without fluorosis in the Van region
-
Increase of complex I and reduction of complex II mitochondrial activity are possible adaptive effects provoked by fluoride exposure.
Fluoride (F) can induce changes in the expression of several liver proteins, most of them localized in the mitochondria and its effect is dose- and time-dependent. This study analyzed the effect of distinct F concentrations and exposure periods on the mitochondrial activity of complex I-III and II-III in the liver.
-
N-acetylcysteine protects against fluoride-induced oxidative damage in primary rat hepatocytes
Fluoride induces the overproduction of free radicals, which might in turn affect various biochemical parameters. Therefore, the aim of this study was to elucidate the role of N-acetylcysteine (NAC) in decreasing fluoride-induced oxidative stress. The fluoride intoxicated (0.002; 0.082; 0.164mmol/l) rat hepatocytes was pre-treated (60min) and simultaneously treated with NAC
-
Protective effect of resveratrol on sodium fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity in rats
Protective effect of resveratrol on sodium fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity were studied in rats. A total of 28 Wistar albino male rats were used. Four study groups were randomly formed with seven animals in each. The groups were treated for 21 days with distilled water (control group), with
-
Changes in liver antioxidant status of offspring mice induced by maternal fluoride exposure during gestation and lactation
Excessive fluoride intake for a long time has been demonstrated to provoke hepatic oxidative stress in adults. However, the response to fluoride toxicity of liver in newborns exposed to fluoride during embryonic and suckling stages remains unclear. In this study, female Kunming mice were administrated with 25, 50, and 100 mg/L
Related Studies :
-
-
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
Related FAN Content :
-