Abstract
Two-dimensional gel electrophoresis (2-DE) was used to detect fluoride-induced alterations in the proteome of the rat hippocampus. Male Sprague-Dawley rats (n=30) were subjected to treatments three weeks after weaning. Animals of the first group were injected intraperitoneally (i.p.) with aqueous NaF (20 mg/kg/body weight/day), the second group, injected with physiological saline, served as the control. After 30 days, the body weight of the fluoride-treated rats was lower than that of the control, and F- levels in serum were higher than in the control. The hippocampus was subjected to proteomic analysis, and the fluoride-treated group was found to contain 19 up-regulated and eight down-regulated proteins. The proteins, identified by mass-spectroscopic analysis of their fragments obtained after digestion, were found to be involved in amino acid biosynthesis, the insulin signaling pathway and various other crucial functions. Our results also provide useful information on the mechanism of the reduction of the learning ability and memory induced by F.
-
-
Effect of fluoride exposure on synaptic structure of brain areas related to learning-memory in mice.
SUMMARY: Learning-memory behavior was tested in mice on a Y-maze after they drank water containing different concentrations of sodium fluoride. Impairment of the structure of the Gray I synaptic interface in the CA3 area of the hippocampus was analyzed quantitatively by electron microscopy and a computer imaging processor. The main
-
Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-kappaB in primary cultured rat hippocampal neurons.
The mechanisms underlying the neurotoxicity of fluorosis still remain obscure. To investigate DNA damage, cell-cycle distribution and expression of nuclear factor kappa B (NF-kappaB) induced by fluoride, the primary rat hippocampal neurons were incubated with various concentrations (20mg/l, 40 mg/l, and 80 mg/l) of sodium fluoride for 24 h in
-
Effects of fluoride on synapse morphology and myelin damage in mouse hippocampus
Highlights Fluoride induced myelin damage in mouse hippocampus. Fluoride shortened the synaptic cleft and thickened the postsynaptic density. Fluoride altered the expressions of CREB, BDNF, and NCAM in hippocampus. To investigate the fluoride-induced neurotoxicity on mice hippocampus, healthy adult mice were exposed to 25, 50, and 100 mg NaF/L for 60 days.
-
Fluoride exposure during pregnancy and lactation triggers oxidative stress and molecular changes in hippocampus of offspring rats.
Highlights Fluoride exposure indirectly increased the levels of F in the offspring's plasma. Fluorine exposure promoted biochemical imbalance in the offspring's hippocampus. The 10 mgF/L and 50 mgF/L groups showed an overexpression of the neurotrophin BDNF. In exposed groups modulation of the proteomic profile of the offspring. Proteins associated
-
Neurotoxicity of fluoride: neurodegeneration in hippocampus of female mice
Light microscopic study of hippocampal sub-regions demonstrated significant number of degenerated nerve cell bodies in the CA3, CA4 and dentate gyrus(Dg) areas of sodium fluoride administered adult female mice. Ultrastructural studies revealed neurodegenrative characteristics like involution of cell membranes, swelling of mitochondria, clumping of chromatin material etc, can be observed in cell
Related Studies :
-
-
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride & IQ: 68 Studies
As of February 2021, a total of 76 studies have investigated the relationship between fluoride and human intelligence. Of these investigations, 68 studies have found that elevated fluoride exposure is associated with reduced IQ in humans, while over 60 animal studies have found that fluoride exposure impairs the learning and/or
Related FAN Content :
-