Abstract
Highlights
- Fluoride concentrations were 0.55 mg L-1 in 3427 water consumption points in Shanxi Province.
- Health risks were assessed for children consumers regarding fluoride exposure.
- Approximately 10%, 1.3% and 0.06% children are at risk for dental decay, dental and skeletal fluorosis, respectively.
- The fluoride concentrations were being decreased significantly from 2008 to 2017.
- The fluoride endemic areas were marked by GIS mapping system.
Excessive and inadequate intake of fluoride may cause adverse effects in children, such as dental caries and dental fluorosis. This study reports the results of monitoring fluoride concentrations in drinking water from an endemic fluorosis region during the ten-year period (2008 through 2017). The fluoride concentration had a range of 0.03–9.42 mg L-1 (mean = 0.55 ± 0.01 mg L-1). Approximately 10%, 1.3% and 0.06% children are at risk for dental decay, dental fluorosis and skeletal fluorosis, respectively. Probabilistic risks for children were assessed and the fluoride endemic areas were marked by GIS mapping system. On several water consumption points, the hazard quotient (HQ) values for children were higher than 1, indicating potential non-cancer health risks due to fluoride exposure. The results of this study will help governmental agencies to develop better policies for protecting children from exposure to fluoride.
Graphical abstract
-
-
Prevalence of fluorosis in Pratabpura and Surajpura villages, District Ajmer (Rajasthan).
HEEP COPYRIGHT: BIOL ABS. In a study of 357 individuals at Pratabpura and Surajpura villages in Ajmer district, Rajasthan, where (F-) contents in water were 14.3 and 13.9 mg/l, respectively, dental fluorosis was present in 280 (83.5%). Males were slightly more (87.56%) affected than females (78.66%). Of children below 15
-
Fluoride's effects on the formation of teeth and bones, and the influence of genetics.
Fluorides are present in the environment. Excessive systemic exposure to fluorides can lead to disturbances of bone homeostasis (skeletal fluorosis) and enamel development (dental/enamel fluorosis). The severity of dental fluorosis is also dependent upon fluoride dose and the timing and duration of fluoride exposure. Fluoride's actions on bone cells predominate
-
A comparative study of dental fluorosis and non-skeletal manifestations of fluorosis in areas with different water fluoride concentrations in rural Kolar.
Background: Fluorosis is an endemic disease which results due to excess exposure to high fluoride from different sources. The climatic factors and dependency on ground water add to the risk of fluorosis in Kolar. In addition to it, the epidemiological studies conducted on fluorosis in Kolar are very few. Aims: (1) To
-
Characteristics of epidemiology of dental caries in children from regions with high and optimum fluorine content in drinking water.
Objective: Introduction: Prevention of dental diseases in children is the priority item on the modern dentistry agenda. Among the undeniable factors known as contributing into caries incidence, there is fluoride content in the external environment, especially in drinking water, which is the main source of fluoride intake. The aim: This
-
Effects of fluoride toxicity on animals, plants, and soil health: a review.
Substantial multi-disciplinary efforts have been made to investigate the effects of environmental fluoride ion (F) pollution since the last century. The chronic ingestion of high doses of F may adversely affect human health by causing skeletal fluorosis, dental fluorosis, bone fractures, the formation of kidney stones, decreased birth rates, weakening
Related Studies :
-
-
-
Dental Fluorosis in the U.S. 1950-2004
Before the widespread use of fluoride in dentistry, dental fluorosis was rarely found in western countries. Today, with virtually every toothpaste now containing fluoride, and most U.S. water supplies containing fluoride chemicals, dental fluorosis rates have reached unprecedented levels. In the 1950s, it was estimated that only 10% of children in
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Moderate/Severe Dental Fluorosis
In its "moderate" and severe forms, fluoride causes a marked increase in the porosity of the enamel. After eruption into mouth, the porous enamel of moderate to severe fluorosis readily takes up stain, creating permanent brown and black discolorations of the teeth. In addition to extensive staining, teeth with moderate to severe fluorosis are more prone to attrition and wear - leading to pitting, chipping, and decay.
Related FAN Content :
-