Fluoride Action Network

Abstract

Endemic fluorosis is a systemic chronic disease caused by excessive intake of fluoride. It is widely accepted that oxidative stress is closely related to fluorosis; however, molecular mechanism of oxidative stress in fluorosis remains unclear. This study investigated the effects of fluoride (F) on oxidative stress markers of lipid, gene, and protein in rats for revealing molecular mechanism of oxidative stress in fluorosis. The results showed concentration and exposure time of fluoride both had a significant effect on MDA and 8-OHdG. Fluoride concentration significantly impacted AGEs level, but exposure time did not. AOPP was not statistically different among the groups. AGEs decreased with the increase of fluoride in the rats with 3 months of fluoride treatment. The correlation analysis showed the degree of dental fluorosis was significantly negatively correlated with 8-OHdG at 1 month and 3 months, and negatively correlated with AGEs at 3 months. In the rats with 100 mg/L of fluoride treatment, MDA was significant positively correlated with 8-OHdG, and negatively correlated with AGEs. 8-OHdG was significantly negatively correlated with AGEs in the control group and 100 mg/L fluoride group. Taken together, fluoride had different effects on oxidative stress markers of lipid, gene, and protein. Excessive fluoride could increase MDA content, and decrease 8-OHdG and AGEs. These findings suggest that oxidative stress involved in molecular pathogenesis of fluorosis is complicated, and needs to furtherly study in the future.

*Original abstract online at https://link.springer.com/article/10.1007%2Fs12011-020-02336-z

References

  1. Kurdi MS (2016) Chronic fluorosis: the disease and its anaesthetic implications. Indian J Anaesth 60(3):157–162. https://doi.org/10.4103/0019-5049.177867

    CAS  Article  PubMed  PubMed Central  Google Scholar

  2. Patel PP, Patel PA, Zulf MM, Yagnik B, Kajale N, Mandlik R, Khadilkar V, Chiplonkar SA, Phanse S, Patwardhan V, Joshi P, Patel A, Khadilkar AV (2017) Association of dental and skeletal fluorosis with calcium intake and serum vitamin D concentration in adolescents from a region endemic for fluorosis. Indian J Endocrinol Metab 21(1):190–195. https://doi.org/10.4103/2230-8210.196013

    CAS  Article  PubMed  PubMed Central  Google Scholar

  3. Xu J, Pei J, Sun D (2017) Advance in the study of the role of miRNA in pathogenesis of skeletal fluorosis. Chin J Endemiol 36(6):460–463. https://doi.org/10.3760/cma.j.issn.2095-4255.2017.06.019

    Article  Google Scholar

  4. Sun D (2011) Endemiology. People’s Medical Publishing House, Beijing

    Google Scholar

  5. Guan Z (2016) Role of oxidative stress in molecular pathogenesis of endemic fluorosis. Chin J Endemiol 35(2):79–82. https://doi.org/10.3760/cma.j.issn.2095-4255.2016.02.001

    Article  Google Scholar

  6. Sun D (2016) Effects of fluoride on the levels of reactive oxygen species and mitochondrial fusion in cultured human neuroblastoma cell lines in vitro. Chin J Ctrl Endem Dis 31(4):401–403

    Google Scholar

  7. Zhang Y, Li W, Chi HS, Chen J, Denbesten PK (2007) JNK/c-Jun signaling pathway mediates the fluoride-induced down-regulation of MMP-20 in vitro. Matrix Biol 26(8):633–641. https://doi.org/10.1016/j.matbio.2007.06.002

    CAS  Article  PubMed  PubMed Central  Google Scholar

  8. Jia J, Yang F, Yang M, Wang C, Song Y (2016) P38/JNK signaling pathway mediates the fluoride-induced down-regulation of Fam83h. Biochem Biophys Res Commun 471(3):386–390. https://doi.org/10.1016/j.bbrc.2016.02.027

    CAS  Article  PubMed  Google Scholar

  9. Allen RG (2000) Oxidative stress and gene regulation. Free Radical Biology & Medicine 28(3):463–499. https://doi.org/10.1016/S0891-5849(99)00242-7

    CAS  Article  Google Scholar

  10. Vogel C, Silva GM, Marcotte EM (2011) Protein expression regulation under oxidative stress. Mol Cell Proteomics 10(12):M111.009217. https://doi.org/10.1074/mcp.M111.009217

    CAS  Article  PubMed  PubMed Central  Google Scholar

  11. Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438–360431. https://doi.org/10.1155/2014/360438

    CAS  Article  PubMed  PubMed Central  Google Scholar

  12. Paredes-Sanchez E, Montiel-Company JM, Iranzo-Cortes JE, Almerich-Torres T, Bellot-Arcis C, Almerich-Silla JM (2018) Meta-analysis of the use of 8-OHdG in saliva as a marker of periodontal disease. Dis Markers 2018:7916578–7916579. https://doi.org/10.1155/2018/7916578

    Article  PubMed  PubMed Central  Google Scholar

  13. Song Y, Liu J, Qiu Z, Chen D, Luo C, Liu X, Hua R, Zhu X, Lin Y, Li L, Liu W, Quan S (2018) Advanced oxidation protein products from the follicular microenvironment and their role in infertile women with endometriosis. Exp Ther Med 15(1):479–486. https://doi.org/10.3892/etm.2017.5390

    CAS  Article  PubMed  Google Scholar

  14. Peng X, Ma J, Chen F, Wang M (2011) Naturally occurring inhibitors against the formation of advanced glycation end-products. Food Funct 2(6):289–301. https://doi.org/10.1039/c1fo10034c

    CAS  Article  PubMed  Google Scholar

  15. Lu Y, Luo Q, Cui H, Deng H, Kuangs P, Liu H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2017) Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging (Albany NY) 9(6):1623–1639. https://doi.org/10.18632/aging.101257

    CAS  Article  Google Scholar

  16. Chaithra B, Sarjan HN, Shivabasavaiah (2019) A comparative analysis of fluoride-contaminated groundwater and sodium fluoride-induced reproductive toxicity and its reversibility in male rats. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01994-y

  17. Zhang J, Song J, Zhang J, Chen X, Zhou M, Cheng G, Xie X (2013) Combined effects of fluoride and cadmium on liver and kidney function in male rats. Biol Trace Elem Res 155(3):396–402. https://doi.org/10.1007/s12011-013-9807-4

    CAS  Article  PubMed  Google Scholar

  18. Feng D, Huang H, Yang Y, Yan T, Jin Y, Cheng X, Cui L (2015) Ameliorative effects of N-acetylcysteine on fluoride-induced oxidative stress and DNA damage in male rats’ testis. Mutat Res Genet Toxicol Environ Mutagen 792:35–45. https://doi.org/10.1016/j.mrgentox.2015.09.004

    CAS  Article  PubMed  Google Scholar

  19. Atmaca N, Atmaca HT, Kanici A, Anteplioglu T (2014) Protective effect of resveratrol on sodium fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity in rats. Food Chem Toxicol 70:191–197. https://doi.org/10.1016/j.fct.2014.05.011

    CAS  Article  PubMed  Google Scholar

  20. Zhong Y, Zhong W, Chen B, He L, Dai W, Wang J, Yu R (2011) Effects of fluoride on oxidative stress and 8-OHdG production in cultured rat osteoblast. Chin Occup Med 38(2):109–112

    CAS  Google Scholar

  21. Lai C, Chen Q, Ding Y, Liu H, Tang Z (2020) Emodin protected against synaptic impairment and oxidative stress induced by fluoride in SH-SY5Y cells by modulating ERK1/2/Nrf2/HO-1 pathway. Environ Toxicol. 35:922–929. https://doi.org/10.1002/tox.22928

    CAS  Article  PubMed  Google Scholar

  22. Song C, Fu B, Zhang J, Zhao J, Yuan M, Peng W, Zhang Y, Wu H (2017) Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway. Sci Rep 7(1):672. https://doi.org/10.1038/s41598-017-00796-3

    CAS  Article  PubMed  PubMed Central  Google Scholar

  23. Wu Y, Xu X, Zeng B, Xiang R, Cao F, Fan X, Wei Y (2015) Impact of excessive fluoride intake on bone tissue oxidative stress. Chin J Endemiol 34(10):729–732. https://doi.org/10.3760/cma.j.issn.2095-4255.2015.10.007

    Article  Google Scholar

  24. Oyagbemi AA, Omobowale TO, Ola-Davies OE, Asenuga ER, Ajibade TO, Adejumobi OA, Afolabi JM, Ogunpolu BS, Falayi OO, Saba AB, Adedapo AA, Yakubu MA (2018) Luteolin-mediated Kim-1/NF-kB/Nrf2 signaling pathways protects sodium fluoride-induced hypertension and cardiovascular complications. Biofactors 44(6):518–531. https://doi.org/10.1002/biof.1449

    CAS  Article  PubMed  Google Scholar

  25. Chen X, Wan C, Zhang S, Luo Y, Qi X, Li Y (2017) Serum oxidative stress products among residents living in endemic area of coal-burning fluorosis. Chin J Public Health 33(5):824–827. https://doi.org/10.11847/zgggws2017-33-05-36

    Article  Google Scholar

  26. Zhang KL, Lou DD, Guan ZZ (2015) Activation of the AGE/RAGE system in the brains of rats and in SH-SY5Y cells exposed to high level of fluoride might connect to oxidative stress. Neurotoxicol Teratol 48:49–55. https://doi.org/10.1016/j.ntt.2015.01.007

    CAS  Article  PubMed  Google Scholar

  27. Pei J, Yao Y, Li B, Wei W, Gao Y, Darko G, Sun D (2017) Excessive fluoride stimulated osteoclast formation through upregulation of receptor activator for nuclear factor-?B Ligand (RANKL) in C57BL6 mice. Int J Clin Exp Med 10(11):15260–15268

    Google Scholar

  28. Yao Y, Ma Y, Zhong N, Pei J (2019) The inverted U-curve association of fluoride and osteoclast formation in mice. Biol Trace Elem Res 191(2):419–425. https://doi.org/10.1007/s12011-018-1624-3

    CAS  Article  PubMed  Google Scholar

  29. Saravanan S, Kalyani C, Vijayarani M, Jayakodi P, Felix A, Nagarajan S, Arunmozhi P, Krishnan V (2008) Prevalence of dental fluorosis among primary school children in rural areas of chidambaram taluk, cuddalore district, Tamil Nadu, India. Indian J Community Med 33(3):146–150. https://doi.org/10.4103/0970-0218.42047

    CAS  Article  PubMed  PubMed Central  Google Scholar

  30. Death C, Coulson G, Kierdorf U, Kierdorf H, Morris WK, Hufschmid J (2015) Dental fluorosis and skeletal fluoride content as biomarkers of excess fluoride exposure in marsupials. Sci Total Environ 533:528–541. https://doi.org/10.1016/j.scitotenv.2015.06.054

    CAS  Article  PubMed  Google Scholar

  31. Bezerra de Menezes LM, Volpato MC, Rosalen PL, Cury JA (2003) Bone as a biomarker of acute fluoride toxicity. Forensic Sci Int 137(2-3):209–214. https://doi.org/10.1016/j.forsciint.2003.08.001

    CAS  Article  PubMed  Google Scholar

  32. Yoshida Y, Umeno A, Shichiri M (2013) Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J Clin Biochem Nutr 52(1):9–16. https://doi.org/10.3164/jcbn.12-112

    CAS  Article  PubMed  Google Scholar

  33. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(2):120–139. https://doi.org/10.1080/10590500902885684

    CAS  Article  PubMed  Google Scholar

  34. Ozbay I, Kucur C, Koçak FE, Savran B, Oghan F (2016) Advanced oxidation protein product levels as a marker of oxidative stress in paediatric patients with chronic tonsillitis. Acta Otorhinolaryngol Ital 36(5):381–385. https://doi.org/10.14639/0392-100x-897

    CAS  Article  PubMed  PubMed Central  Google Scholar

  35. Tangvarasittichai S (2015) Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 6(3):456–480. https://doi.org/10.4239/wjd.v6.i3.456

    Article  PubMed  PubMed Central  Google Scholar

  36. Tsikas D (2017) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 524:13–30. https://doi.org/10.1016/j.ab.2016.10.021

    CAS  Article  PubMed  Google Scholar

  37. Canakci CF, Cicek Y, Yildirim A, Sezer U, Canakci V (2009) Increased levels of 8-hydroxydeoxyguanosine and malondialdehyde and its relationship with antioxidant enzymes in saliva of periodontitis patients. Eur J Dent 3(2):100–106

    Article  Google Scholar

  38. Wu Q, Zhong ZM, Pan Y, Zeng JH, Zheng S, Zhu SY, Chen JT (2015) Advanced oxidation protein products as a novel marker of oxidative stress in postmenopausal osteoporosis. Med Sci Monit 21:2428–2432. https://doi.org/10.12659/MSM.894347

    CAS  Article  PubMed  PubMed Central  Google Scholar

  39. da SilveiraCavalcante L, Acker JP, Holovati JL (2015) Differences in rat and human erythrocytes following blood component manufacturing: the effect of additive solutions. Transfus Med Hemother 42(3):150–157. https://doi.org/10.1159/000371474

    Article  PubMed  PubMed Central  Google Scholar

  40. Martens GA (2015) Species-related differences in the proteome of rat and human pancreatic beta cells. J Diabetes Res 2015:549818–549811. https://doi.org/10.1155/2015/549818

    CAS  Article  PubMed  PubMed Central  Google Scholar

  41. Konopelski P, Ufnal M (2016) Electrocardiography in rats: a comparison to human. Physiol Res 65(5):717–725. https://doi.org/10.33549/physiolres.933270

    CAS  Article  PubMed  Google Scholar

  42. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H (2010) Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 110(6):911–916.e912. https://doi.org/10.1016/j.jada.2010.03.018

    Article  PubMed  PubMed Central  Google Scholar

  43. Yu Y, Wang L, Delguste F, Durand A, Guilbaud A, Rousselin C, Schmidt AM, Tessier F, Boulanger E, Neviere R (2017) Advanced glycation end products receptor RAGE controls myocardial dysfunction and oxidative stress in high-fat fed mice by sustaining mitochondrial dynamics and autophagy-lysosome pathway. Free Radic Biol Med 112:397–410. https://doi.org/10.1016/j.freeradbiomed.2017.08.012

    CAS  Article  PubMed  Google Scholar

  44. Leung C, Herath CB, Jia Z, Andrikopoulos S, Brown BE, Davies MJ, Rivera LR, Furness JB, Forbes JM, Angus PW (2016) Dietary advanced glycation end-products aggravate non-alcoholic fatty liver disease. World J Gastroenterol 22(35):8026–8040. https://doi.org/10.3748/wjg.v22.i35.8026

    CAS  Article  PubMed  PubMed Central  Google Scholar

  45. Byun K, Yoo Y, Son M, Lee J, Jeong GB, Park YM, Salekdeh GH, Lee B (2017) Advanced glycation end-products produced systemically and by macrophages: a common contributor to inflammation and degenerative diseases. Pharmacol Ther 177:44–55. https://doi.org/10.1016/j.pharmthera.2017.02.030

    CAS  Article  PubMed  Google Scholar

  46. Davis KE, Prasad C, Vijayagopal P, Juma S, Imrhan V (2016) Advanced glycation end products, inflammation, and chronic metabolic diseases: links in a chain. Crit Rev Food Sci Nutr 56(6):989–998. https://doi.org/10.1080/10408398.2012.744738

    CAS  Article  PubMed  Google Scholar

  47. Luevano-Contreras C, Chapman-Novakofski K (2010) Dietary advanced glycation end products and aging. Nutrients 2(12):1247–1265. https://doi.org/10.3390/nu2121247

    CAS  Article  PubMed  PubMed Central  Google Scholar

Funding

This study was supported by National Natural Science Foundation of China (81773468 and 811302389), the Wu Liande Science Foundation of Harbin Medical University (Grant No. WLD-QN1703), and Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (LBH-Q17092).

Author information

Affiliations