Fluoride Action Network

Abstract

Biocontainment systems are needed to neutralize genetically modified organisms (GMOs) that pose ecological threats outside of controlled environments. In contrast, benign selection markers complement GMOs with reduced fitness. Benign selection agents serve as alternatives to antibiotics, which are costly and risk spread of antibiotic resistance. Here, we present a yeast biocontainment strategy leveraging engineered fluoride sensitivity and DNA vectors enabling use of fluoride as a selection agent. The biocontainment system addresses the scarcity of platforms available for yeast despite their prevalent use in industry and academia. In the absence of fluoride, the biocontainment strain exhibits phenotypes nearly identical to those of the wildtype strain. Low fluoride concentrations severely inhibit biocontainment strain growth, which is restored upon introduction of fluoride-based vectors. The biocontainment strategy is stringent, easily implemented, and applicable to several eukaryotes. Further, the DNA vectors enable genetic engineering at reduced costs and eliminate risks of propagating antibiotic resistance.

Fig. 1: Engineered fluoride sensitivity augments biocontainment and selection systems.

figure1

Yeast cells lacking native fluoride exporter genes (FEX1/FEX2) are highly sensitized to low concentrations of fluoride yet retain wildtype phenotypes in the absence of the ion. Accordingly, this mechanism befits biocontainment of genetically modified organisms (GMOs) that pose ecological risks outside of laboratory environments. Alternatively, fluoride sensitivity can be leveraged to provide an alternative selection marker in GMOs with reduced fitness and likelihood of persistence in the environment.


*Original full-text study online at https://www.nature.com/articles/s41467-020-19271-1

References

  1. Hayden, E. C. Synthetic-biology firms shift focus. Nature 505, 598 (2014).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar

  2. Li, M. & Borodina, I. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res. 15, 1–12 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar

  3. Collins, J. J. & Khalil, A. S. Synthetic biology: applications come of age. Nat. Rev. Genet. 11, 367–379 (2010).

    PubMed  PubMed Central  Google Scholar

  4. Jensen, M. K. & Keasling, J. D. Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res. 15, 1–10 (2014).

    Google Scholar

  5. Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar

  6. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 52, 52–56 (2012).

    Google Scholar

  7. Hutchison, C. A. et al. Design and synthesis of a minimal bacterial genome. Science 351, aad6253 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar

  8. Ostrov, N. et al. Design, synthesis, and testing toward a 57-codon genome. Science 353, 819–822 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar

  9. Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar

  10. Berg, P., Baltimore, D., Brenner, S., Roblin, R. O. & Singer, M. F. Summary statement of the Asilomar conference on recombinant DNA molecules. Proc. Natl Acad. Sci. USA 72, 1981–1984 (1975).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar

  11. Moe-Behrens, G. H. G., Davis, R. & Haynes, K. A. Preparing synthetic biology for the world. Front. Microbiol. 4, 44–49 (2013).

    Article  Google Scholar

  12. Lee, J. W., Chan, C. T. Y., Slomovic, S. & Collins, J. J. Next-generation biocontainment systems for engineered organisms. Nat. Chem. Biol. 14, 1 (2018).

    Google Scholar

  13. O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (2016).
  14. Mignon, C., Sodoyer, R. & Werle, B. Antibiotic-free selection in biotherapeutics: now and forever. Pathogens 4, 157–181 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar

  15. Wright, O., Stan, G.-B. & Ellis, T. Building-in biosafety for synthetic biology. Microbiology 159, 1221–1235 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar

  16. Cai, Y. et al. Intrinsic biocontainment: Multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes. Proc. Natl Acad. Sci. USA 112, 1803–1808 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar

  17. Agmon, N. et al. Low escape-rate genome safeguards with minimal molecular perturbation of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 114, E1470–E1479 (2017).

    CAS  PubMed  Article  Google Scholar

  18. Redden, H., Morse, N. & Alper, H. S. The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res. 15, 1–10 (2014).

    Google Scholar

  19. Da Silva, N. A. & Srikrishnan, S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res. 12, 197–214 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar

  20. Wang, G., Huang, M. & Nielsen, J. Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production. Curr. Opin. Biotechnol. 48, 77–84 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar

  21. Borodina, I. & Nielsen, J. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 9, 609–620 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar

  22. Li, S. et al. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins. Proc. Natl Acad. Sci. USA 110, 19018–19023 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar

  23. Seppala, S., Yoo, J. I., Yur, D. & O’Malley, M. A. Heterologous transporters from anaerobic fungi bolster fluoride tolerance in Saccharomyces cerevisiae. Metab. Eng. Commun. 9, e00091 (2019).

    PubMed  PubMed Central  Article  Google Scholar

  24. EPA. National Primary Drinking Water Regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (2020).
  25. McMahon, P. B., Brown, C. J., Johnson, T. D., Belitz, K. & Lindsey, B. D. Fluoride occurrence in United States groundwater. Sci. Total Environ. 732, 139217 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar

  26. Edmunds, W. M. & Smedley, P. L. Fluoride in natural water. In Essentials of Medical Geology: Revised Edition (eds Selinus, O. et al.) 311–336 (Springer, 2013).
  27. Gojkovic, Z. et al. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol. Genet. Genomics 271, 387–393 (2004).

    PubMed  Article  CAS  PubMed Central  Google Scholar

  28. Hall, C., Brachat, S. & Dietrich, F. S. Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot. Cell 4, 1102–1115 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar

  29. Heinemann, J. A. & Sprague, G. F. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340, 205–209 (1989).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar

  30. Hartwell, L. H. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J. Cell Biol. 85, 811–822 (1980).

    CAS  PubMed  Article  PubMed Central  Google Scholar

  31. Kawasaki, G. H. & Bell, L. Stable DNA Constructs. US Patent 5871957 (1999).
  32. Liu, Z., Tyo, K. E. J., Martínez, J. L., Petranovic, D. & Nielsen, J. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol. Bioeng. 109, 1259–1268 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar

  33. Yoo, J. I. & O’Malley, M. A. Tuning vector stability and integration frequency elevates functional GPCR production and homogeneity in Saccharomyces cerevisiae. ACS Synth. Biol. 7, 1763–1772 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar

  34. Erhart, E. & Hollenberg, C. P. The presence of a defective LEU2 gene on 2? DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J. Bacteriol. 156, 625–635 (1983).

    CAS  PubMed  PubMed Central  Article  Google Scholar

  35. Loison, G. et al. High level of expression of a protective antigen of schistosomes in Saccharomyces cerevisiae. Yeast 5, 497–507 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar

  36. Barbier, O., Arreola-Mendoza, L. & Del Razo, L. M. Molecular mechanisms of fluoride toxicity. Chem. Biol. Interact. 188, 319–333 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar

  37. Sun, J. et al. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol. Bioeng. 109, 2082–2092 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar

  38. Lee, M. E., DeLoache, W. C., Cervantes, B. & Dueber, J. E. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 4, 975–986 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar

  39. Wittrup, K. D., Robinson, A. S., Parekh, R. N. & Forrester, K. J. Existence of an optimum expression level for secretion of foreign proteins in yeast. Ann. N. Y. Acad. Sci. 745, 321–330 (1994).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar

  40. Parekh, R., Forrester, K. & Wittrup, D. Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of Saccharomyces cerevisiae. Protein Expr. Purif. 6, 537–545 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar

  41. Storici, F. & Resnick, M. A. The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol. 409, 329–345 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar

  42. Brindha, K. & Elango, L. Fluoride in Groundwater: Causes, Implications and Mitigation Measures. In Fluoride: Properties, Applications, and Environmental Management. (ed Monroy, S. D.) 111–136 (Nova Publishers, 2011).
  43. Fernandez, R. & Berro, J. Use of a fluoride channel as a new selection marker for fission yeast plasmids and application to fast genome editing with CRISPR/Cas9. Yeast 33, 549–557 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar

  44. Looke, M., Kristjuhan, K. & Kristjuhan, A. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50, 325–328 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar

  45. Nørholm, M. H. H. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol. 10, 21 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar

  46. Gietz, R. D. & Woods, R. A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350, 87–96 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar

  47. Wittrup, K. D. & Benig, V. Optimization of amino acid supplements for heterologous protein secretion in Saccharomyces cerevisiae. Biotechnol. Tech. 8, 161–166 (1994).

    CAS  Article  Google Scholar

  48. Micha, P. & Corradini, M. G. Microbial growth curves: what the models tell us and what they cannot. Crit. Rev. Food Sci. Nutr. 51, 917–945 (2011).

    Article  Google Scholar

  49. Gutknecht, J. & Walter, A. Hydrofluoric and nitric acid transport through lipid bilayer membranes. Biochim. Biophys. Acta – Biomambr. 644, 153–156 (1981).

    CAS  Article  Google Scholar

Download references

Acknowledgements

We thank Dr. Stephen Streatfield for helpful discussions regarding biocontainment systems and Professor Simon Avery for pSVA13. J.I.Y. acknowledges support from a National Science Foundation Graduate Research Fellowship under grant no. 1650114. The authors further acknowledge funding support from the National Science Foundation (MCB-1553721).

Author information

Affiliations

Contributions

J.I.Y. and M.A.O. conceived the study, designed the experiments, analyzed the data, and wrote the manuscript. J.I.Y. and S.S. conducted the experiments.

Corresponding author

Correspondence to Michelle A. O’Malley.

Ethics declarations

Competing interests

The authors declare the following competing interests: J.I.Y. and M.A.O. are authors on a patent application, application number 63072933, which has been filed. All other authors declare no competing interests.

Additional information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoo, J.I., Seppälä, S. & O?Malley, M.A. Engineered fluoride sensitivity enables biocontainment and selection of genetically-modified yeasts. Nat Commun 11, 5459 (2020). https://doi.org/10.1038/s41467-020-19271-1

Nature Communications ISSN 2041-1723 (online)