Abstract: Fluoride is an important element for humans. It inhibits initiation and progression of dental caries and stimulates bone formation. However, excessive intake may lead to the appearance of dental and/or skeletal fluorosis and a decrease in intellectual coefficient in child populations. This study evaluates exposure to fluoride in the child population of Chaco province (Argentina) by analysis of drinking water, food and its bioaccessible fraction (quantity of fluoride solubilised by gastrointestinal digestion and available for intestinal absorption) and urine as a biomarker of internal dose. The concentration of fluoride in drinking water varied between 0.050 and 4.6 mg L?1, and 80% of the samples exceeded the WHO drinking-water guideline value (1.5 mg L?1). Fluoride concentrations in food ranged between 0.80 and 3.0 mg kg?1 fresh weight (fw), being lower in bioaccessible fraction (0.43–1.9 mg kg?1, fw). On the basis of the consumption data declared for the young child population, fluoride intake varies between 4.1 and 6.5 mg day?1, greater than the level recommended for this age group. Moreover, in some cases, concentrations of fluoride found in urine (0.62–8.9 mg L?1) exceeded those reported in areas with declared fluorosis. All data obtained show the worrying situation of child population in this area of Argentina.

Keywords: Fluoride, Child population, Drinking water, Food, Urine

Responsible editor: Philippe Garrigues


  1. Au AP, Reddy MR (2000) Caco-2 cells can be used to assess human iron bioavailability from a semipurified meal. J Nutr 130:1329–1334Google Scholar
  2. Aylward LL, Hays SM, Vezina A, Deveau M, St-Amand A, Nong A (2015) Biomonitoring equivalents for interpretation of urinary fluoride. Regul Toxicol Pharmacol 72:158–167. doi:10.1016/j.yrtph.2015.04.005 CrossRefGoogle Scholar
  3. Azcurra AI, Battellino LJ, Calamari SE, Dorronsoro de Cattoni ST, Kremer M, Lamberghini FC (1995) Estado de salud bucodental de escolares residentes en localidades abastecidas con agua de consumo humano de muy alto y muy bajo contenido de fluoruros. Rev Saúde Pub 29:364–375CrossRefGoogle Scholar
  4. Brandon EFA, Oomen AG, Rompelberg CJM, Versantvoort CHM, Van Engelen JGM, Sips AJAM (2006) Consumer product in vitro digestion model: Bioaccessibility of contaminants and its application in risk assessment. Regul Toxicol Pharmacol 44:161–171. doi:10.1016/j.yrtph.2005.10.002 CrossRefGoogle Scholar
  5. Buchhamer EE, Blanes PS, Osicka RM, Giménez MC (2012) Environmental risk assessment of arsenic and fluoride in the Chaco province, Argentina: research advances. J Toxicol Environ Health Part A 75:1437–1450. doi:10.1080/15287394.2012.721178 CrossRefGoogle Scholar
  6. Bundschuh J, Farias B, Martin R, Storniolo A, Bhattacharya P, Cortes J, Bonorino G, Albouy R (2004) Groundwater arsenic in the Chaco-Pampean plain, Argentina: case study from Robles county, Santiago del Estero Province. Appl Geochem 19:231–243. doi:10.1016/j.apgeochem.2003.09.009 CrossRefGoogle Scholar
  7. Cerklewski FL (1987) Influence of dietary magnesium on fluoride bioavailability in the rat. J Nutr 117:496–500Google Scholar
  8. CAA. Código Alimentario Argentino. (2012) Capítulo XII. Bebidas hídricas, agua y agua gasificada. Agua potable. Artículo 982. Resolución Conjunta SPRyRS y N° 68/2007 y N° 196/2007.Google Scholar
  9. EFSA (2005) Opinion of the scientific panel on dietetic products, nutrition and allergies on a request from the commission related to the tolerable upper intake level of fluoride. EFSA J 2005(192):1–65 Available at: http://www.efsa.europa.eu/en/efsajournal/pub/192. Accessed April 2016Google Scholar
  10. Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2006) Fluoride in drinking-water. IWA Publishing, LondonGoogle Scholar
  11. Gomez ML, Blarasin MT, Martinez DE (2009) Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environ Geol 57:143–155. doi:10.1007/s00254-008-1290-4 CrossRefGoogle Scholar
  12. ICPS (2002) Fluorides. Environmental health criteria 227. World Health Organization, Geneva Available at: whqlibdoc.who.int/ehc/WHO_EHC_227.pdf. http://www.nap.edu/catalog/5776.html. Accessed April 2016Google Scholar
  13. INDEC (2014) Instituto Nacional de Estadística y Censos de la República Argentina. Censo Nacional de Población, Hogares y Viviendas 2010. www.censo2010.indec.gov.ar
  14. Institute of Medicine (IOM) (1997) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine. 1997. Available at: http://www.nap.edu/catalog/5776.html. Accessed April 2016
  15. Irigoyen-Camacho ME, García Pérez A, Mejía González A, Huizar Alvarez R (2016) Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico. Sci Total Environ 541:512–519. doi:10.1016/j.scitotenv.2015.09.085.
  16. Laparra JM, Velez D, Montoro R, Barbera R, Farre R (2003) Estimation of arsenic bioaccessibility in edible seaweed by an in vitro digestion method. J Agric Food Chem 51:6080–8605. doi:10.1021/jf034537i CrossRefGoogle Scholar
  17. Maguire A, Zohouri FV, Hindmarch PN, Hatts J, Moynihan PJ (2007) Fluoride intake and urinary excretion in 6- to 7-year-old children living in optimally, suboptimally and non-fluoridated areas. Community Dent Oral Epidemiol 35:479–488. doi:10.1111/j.1600-0528.2006.00366.x CrossRefGoogle Scholar
  18. Martínez DE, Londoño OMQ, Massone HE, Buitrago PP, Lima L (2012) Hydrogeochemistry of fluoride in the Quequen river basin: natural pollutants distribution in the argentine pampa. Environ Earth Sci 65:411–420. doi:10.1007/s12665-011-0988-x CrossRefGoogle Scholar
  19. Martínez-Mier EA, Soto-Rojas AE, Ureña-Cirett JL, Stookey GK, Dunipace AJ (2003) Fluoride intake from foods, beverages and dentifrice by children in Mexico. Community Dent Oral Epidemiol 31:221–230. doi:10.1034/j.1600-0528.2003.00043.x CrossRefGoogle Scholar
  20. Miziara AP, Philippi ST, Levy FM, Buzalaf MA (2009) Fluoride ingestion from food items and dentifrice in 2–6-year-old Brazilian children living in a fluoridated area using a semiquantitative food frequency questionnaire. Community Dent Oral Epidemiol 37:305–315. doi:10.1111/j.1600-0528.2009.00477.x CrossRefGoogle Scholar
  21. Nicolli HB, Bundschuh J, Blanco MC, Tujchneider OC, Panarello HO, Dapeña C, Rusansky JE (2012) Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Total Environ 429:36–56. doi:10.1016/j.scitotenv.2012.04.048 CrossRefGoogle Scholar
  22. Ozsvath DL (2009) Fluoride and environmental health: a review. Rev Environ Sci Biotechnol 8:59–79. doi:10.1007/s11157-008-9136-9 CrossRefGoogle Scholar
  23. Rango T, Vengosh A, Jeuland M, Tekle-Haimanot R, Weinthal E, Kravchenko J, Paul C, McCornick P (2014) Fluoride exposure from groundwater as reflected by urinary fluoride and children’s dental fluorosis in the Main Ethiopian Rift Valley. Sci Total Environ 496:188–197. doi:10.1016/j.scitotenv.2014.07.048 CrossRefGoogle Scholar
  24. Rasool A, Xiao T, Baig ZT, Masood S, Mostofa KMG, Iqbal M (2015) Co-occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: source discrimination and health risk assessment. Environ Sci Pollut Res 22:19729–19746. doi:10.1007/s11356-015-5159-2 CrossRefGoogle Scholar
  25. Rocha RA, Rojas D, Clemente MJ, Ruiz A, Devesa V, Vélez D (2013) Quantification of fluoride in food by microwave acid digestion and fluoride ion-selective electrode. J Agric Food Chem 61:10708–10713. doi:10.1021/jf403728r CrossRefGoogle Scholar
  26. Ruiz-Payan A, Ortiz M, Duarte-Gardea M (2005) Determination of fluoride in drinking water and in urine of adolescents living in three counties in northern Chihuahua Mexico using a fluoride ion selective electrode. Microchem J 81:19–22. doi:10.1016/j.microc.2005.01.017 CrossRefGoogle Scholar
  27. Samal AC, Bhattacharya P, Mallick A, Motakabber Ali M, Pyne J, Santra SC (2015) A study to investigate fluoride contamination and fluoride exposure dose assessment in lateritic zones of West Bengal, India. Environ Sci Pollut Res 22:6220–6229. doi:10.1007/s11356-014-3817-4 CrossRefGoogle Scholar
  28. Saxena S, Sahay A, Goel P (2012) Effect of fluoride exposure on the intelligence of school children in Madhya Pradesh, India. J Neurosci Rural Pract 3:144–149. doi:10.4103/0976-3147.98213 CrossRefGoogle Scholar
  29. Seraj B, Shahrabi M, Shadfar M, Ahmadi R, Fallahzadeh M, Farrokh Eslamlu H, Kharazifard MJ (2012) Effect of high water fluoride concentration on the intellectual development of children in Makoo/Iran. J Dent 9:221–229Google Scholar
  30. Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17:259–284. doi:10.1016/S0883-2927(01)00082-8 CrossRefGoogle Scholar
  31. Spencer HL, Kramer L, Norris C, Wiatrowski E (1980) Effect of aluminum hydroxide on fluoride metabolism. Clin Pharmacol Ther 28:529–535CrossRefGoogle Scholar
  32. Tang Q-Q, Du J, Ma H-H, Jiang S-J, Zhou X-J (2008) Fluoride and Children’s intelligence: a meta-analysis. Biol Trace Elem Res 126:115–120. doi:10.1007/s12011-008-8204-x CrossRefGoogle Scholar
  33. Trautner K, Einwag J (1989) Influence of milk and food on fluoride bioavailability from NaF and Na2FPO3 in man. J Dent Res 68:72–77CrossRefGoogle Scholar
  34. USDA National Fluoride Database of Selected Beverages and Foods. U.S (2004) Department of Agriculture and Agriculture Research Service. Beltsville Human Nutrition Research Center. 2004. Available at: http://www.ars.usda.gov/SP2UserFiles/Place/80400525/Data/Fluoride/F02.pdf. Accessed April 2016
  35. US-EPA, United States Environmental Protection Agency (2010) Fluoride: dose-response analysis for non-cancer effects. 820-R-10-019. Health and Ecological Criteria Division, Office of Water, Washington, D.CGoogle Scholar
  36. Villa A, Anabalon M, Zohouri V, Maguire A, Franco AM, Rugg-Gunn A (2010) Relationships between fluoride intake, urinary fluoride excretion and fluoride retention in children and adults: an analysis of available data. Caries Res 44:60–68. doi:10.1159/000279325
  37. Viswanathan G, Jaswanth A, Gopalakrishnan S, Siva Ilango S (2009) Mapping of fluoride endemic areas and assessment of fluoride exposure. Sci Total Environ 407:1579–1587. doi:10.1016/j.scitotenv.2008.10.020 CrossRefGoogle Scholar
  38. Wang C, Gao Y, Wang W, Zhao L, Zhang W, Han H, Shi Y, Yu G, Sun D (2012) A national cross-sectional study on effects of fluoride-safe water supply on the prevalence of fluorosis in China. BMJ Open 2(5):e001564. doi:10.1136/bmjopen-2012-001564 CrossRefGoogle Scholar
  39. WHO, World Health Organization (2011) Guidelines for drinking-water quality, Fourth edn. WHO Press, Geneva Available at: http://www.who.int/water_sanitation_health/publications/dwq_guidelines/en/. Accessed April 2016Google Scholar
  40. WHO, World Health Organization (2015) Water sanitation and health (WSH). Naturally occurring hazards: fluoride. WHO Press, Geneva Available at: http://www.who.int/water_sanitation_health/naturalhazards/en/index2.html. Accessed April 2016Google Scholar
  41. Zohouri FV, Swinbank CM, Maguire A, Moynihan PJ (2006) Is the fluoride/creatinine ratio of a spot urine sample indicative of 24-h urinary fluoride? Community Dent Oral Epidemiol 34:130–138. doi:10.1111/j.1600-0528.2006.00269.x CrossRefGoogle Scholar

    *Article available at https://link.springer.com/article/10.1007%2Fs11356-017-9010-9