Abstract
Fluoride is present in the ground water, World Health Organization permitted level of fluoride in the ground water is 0.5 ppm. Tooth pastes, mouth washes, tea and sea fish are the sources of fluoride. Exposure to these multiple sources results in several adverse effects in addition to the fluorosis. The present study aimed to test the effect of vitamin C and Ginkgo biloba against the behavioural deficits caused by fluoride. Rats were divided into five groups with six animals in each group (n = 6). Control group received ordinary tap water with 0.5 ppm of fluoride, the remaining groups received 100 ppm of fluoride for 30 days prior to fluoride exposure. Two groups of animals received 100 mg/kg body weight of vitamin C and G. biloba for 15 days prior to fluoride exposure. After 45 days, behavioural studies (T-Maze, passive avoidance) were conducted on the experimental animals. The results of the present study showed no behavioural deficits in the control group of animals however, the rats that received fluoride water exhibited impairment in their spatial learning and memory deficits. The deficits are not marked in the vitamin C and G. biloba groups. To conclude chronic exposure to high levels of fluoride causes severe impairment in the spatial learning and memory, these deficits can be ameliorated with the vitamin C and G. biloba.
-
-
Evaluation of standardized Bacopa monniera extract in sodium fluoride-induced behavioural, biochemical, and histopathological alterations in mice
Effect of standardized Bacopa monniera (BM; family: Scrophulariaceae) extract (100 and 300 mg/kg) against sodium fluoride (NaF; 100 and 200 ppm)-induced behavioural, biochemical, and neuropathological alterations in mice was evaluated. Akinesia, rotarod (motor coordination), forced swim test (depression), open field test (anxiety), transfer latency (memory), cholinesterase (ChE), and oxidative stress
-
Investigation on the role of Spirulina platensis in ameliorating behavioural changes, thyroid dysfunction and oxidative stress in offspring of pregnant rats exposed to fluoride.
Highlights Sodium fluoride exposure from pregnancy to lactation induces thyroid toxicity. This can affect neurodevelopment and induce behavioural changes. Spirulina platensis role in reversing fluoride-induced toxicity was ascertained. Significant protection was exerted by Spirulina The study investigated the role of Spirulina platensis in reversing sodium fluoride-induced thyroid, neurodevelopment and oxidative alterations
-
[Effect of lycopene on oxidative stress and neurobehavior in mouse exposed to drinking water fluorosis].
Objective To investigate the relationship between lycopene exposure and neurobehavior and its mechanism in mouse exposed to drinking water fluorosis. Methods Sixty adult mice were randomly divided into six groups (ten animals in each group) : control group, lycopene group, sodium fluoride (NaF) group, NaF + low, medium, high dose lycopene groups.
-
Mitigating role of quercetin against sodium fluoride-induced oxidative stress in the rat brain
CONTEXT: Quercetin is a well known aglycone flavonoid that is widely found in different food sources. OBJECTIVE: In this study, the in vivo neuroprotective potential of quercetin against sodium fluoride-induced oxidative stress was evaluated. MATERIALS AND METHODS: Wistar rats were divided into five treatment groups and then subjected to daily
-
Protective effects of curcumin against fluoride-induced oxidative stress in the rat brain
We examined effects of a plant polyphenolic compound, curcumin, against fluoride-induced oxidative stress in the rat brain. Five experimental groups of male rats (10 animals each) were compared. Animals of these experimental groups were treated with curcumin (10 and 20 mg/kg body mass), vitamin C (10 mg/kg), and sample solvent
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
Related FAN Content :
-