Abstract
Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats’ intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.
-
-
Evaluation of standardized Bacopa monniera extract in sodium fluoride-induced behavioural, biochemical, and histopathological alterations in mice
Effect of standardized Bacopa monniera (BM; family: Scrophulariaceae) extract (100 and 300 mg/kg) against sodium fluoride (NaF; 100 and 200 ppm)-induced behavioural, biochemical, and neuropathological alterations in mice was evaluated. Akinesia, rotarod (motor coordination), forced swim test (depression), open field test (anxiety), transfer latency (memory), cholinesterase (ChE), and oxidative stress
-
Roles of mitochondrial fission inhibition in developmental fluoride neurotoxicity: mechanisms of action in vitro and associations with cognition in rats and children.
Fluoride neurotoxicity is associated with mitochondrial disruption. Mitochondrial fission/fusion dynamics is crucial to maintain functional mitochondria, yet little is known about how fluoride perturbs this dynamics and whether such perturbation contributes to impaired neurodevelopment. Here in human neuroblastoma SH-SY5Y cells treated with sodium fluoride (NaF, 20, 40 and 60 mg/L), mitochondrial
-
Cognitive Decline of Rats with Chronic Fluorosis Is Associated with Alterations in Hippocampal Calpain Signaling.
The study was designed to evaluate an influence of excessive fluoride (F-) intake on cognitive capacities of adult rats and on proteins of memory-related calpain signaling in hippocampus. Control animals were given water with natural F- content of 0.4 ppm; rats from other groups consumed the same water supplemented with 5,
-
Melatonin ameliorates fluoride induced neurotoxicity in young rats: an in vivo evidence
Objective: Developing brain is highly vulnerable to environmental toxins. Recently, fluoride was declared as a developmental neurotoxin and heralded search for natural neuroprotectant. In the present study, we have evaluated the neuroprotective and anti-inflammatory efficacy of melatonin in fluoride induced neurotoxicity. Methods: Animals were divided into following groups; the first group
-
Effects of high fluoride and arsenic on brain biochemical indexes and learning-memory in rats
Nine-six Wistar rats were randomly divided into four groups of 24 rats in each group (female:male = 1:1). Over a period up to 90 days, with one untreated group as controls, the other three groups were administered, respectively, high fluoride (100 mg NaF/L), high arsenic (50 mg As2O3/L), or both
Related Studies :
-
-
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride & IQ: 74 Studies
• As of May 2022, a total of 83 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 74 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure to
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
Related FAN Content :
-