Abstract
High-fluoride (100 and 200 ppm) water was administered to rats orally to study the fluoride-induced changes on the thyroid hormone status, the histopathology of discrete brain regions, the acetylcholine esterase activity, and the learning and memory abilities in multigeneration rats. Significant decrease in the serum-free thyroxine (FT4) and free triiodothyronine (FT3) levels and decrease in acetylcholine esterase activity in fluoride-treated group were observed. Presence of eosinophilic Purkinje cells, degenerating neurons, decreased granular cells, and vacuolations were noted in discrete brain regions of the fluoride-treated group. In the T-maze experiments, the fluoride-treated group showed poor acquisition and retention and higher latency when compared with the control. The alterations were more profound in the third generation when compared with the first- and second-generation fluoride-treated group. Changes in the thyroid hormone levels in the present study might have imbalanced the oxidant/antioxidant system, which further led to a reduction in learning memory ability. Hence, presence of generational or cumulative effects of fluoride on the development of the offspring when it is ingested continuously through multiple generations is evident from the present study.
-
-
Investigation on the role of Spirulina platensis in ameliorating behavioural changes, thyroid dysfunction and oxidative stress in offspring of pregnant rats exposed to fluoride.
Highlights Sodium fluoride exposure from pregnancy to lactation induces thyroid toxicity. This can affect neurodevelopment and induce behavioural changes. Spirulina platensis role in reversing fluoride-induced toxicity was ascertained. Significant protection was exerted by Spirulina The study investigated the role of Spirulina platensis in reversing sodium fluoride-induced thyroid, neurodevelopment and oxidative alterations
-
Effects of fluoride exposure on thyroid hormone level and intelligence in rats
Objective: To investigate the effects of fluoride exposure on the thyroid hormone level and intelligence in rats and to investigate the biomarkers of intellectual impairment induced by high fluoride exposure. Methods: A total of 24 clean healthy Sprague-Dawley rats were randomly divided into control group (tap water containing 0.344 mg/L fluoride)
-
Fluoride-induced developmental disorders and iodine deficiency disorders as examples of developmental disorders due to disturbed thyroid hormone metabolism.
Both exposure to fluoride and iodine deficiency during early development can lead to disturbed thyroid hormone metabolism and produce the same spectrum of developmental disorders including short stature, bone deformities, cognitive impairment, delayed dental eruption, and dental fluorosis. The levels of creatinine-adjusted urinary fluoride experienced by pregnant women in areas
-
Studies of relationships between the polymorphism of COMT gene and plasma proteomic profiling and children’s intelligence in high fluoride areas
Part I – Effect of high F drinking water on children’s IQ Objective: To investigate the relationships among the children’s serum F, urine F, thyroid hormone levels and children’s IQ in the high fluoride areas. Methods: We collected the samples of the drinking water, urine and blood and measured the F concentrations,
-
Thyroid function, intelligence, and low-moderate fluoride exposure among Chinese school-age children.
Highlights Low-moderate fluoride was related to alterations in childhood thyroid function. Fluoride exposure was associated with a decrease in children’s intelligence. TT3, FT3 were positively related to the odds of developing high normal intelligence. TSH may modify the association of fluoride with children’s intelligence. Background: Thyroid hormones (THs) are critical for
Related Studies :
-
-
-
Fluoride's Impact on Thyroid Hormones
Up through the 1950s, doctors in Europe and South America prescribed fluoride for this purpose in patients with hyperthyroidism. (Merck Index 1968). Fluoride was selected as a thyroid suppressant based on findings dating back to the mid-19th century that fluoride is a goitrogen (a substance that can cause goiter). When used as
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluorine in the Aetiology of Endemic Goitre
The distribution of endemic goitre in the Punjab and in England is related to the geological distribution of fluorine and to the distribution of human dental fluorosis (mottled enamel). Inquiry showed the presence of dental fluorosis among school-children in two areas of Somerset where two previous observers had recorded a high incidence of goitre, and the absence of dental fluorosis in an adjoining area selected as control where endemic goitre was absent.
-
NRC (2006): Fluoride's Impact on the Thyroid Gland
Several lines of information indicate an effect of fluoride exposure on thyroid function. It is difficult to predict exactly what effects on thyroid function are likely at what concentration of fluoride exposure and under what circumstances.
-
Fluoride Exposure Aggravates the Impact of Iodine Deficiency
A consistent body of animal and human research shows that fluoride exposure worsens the impact of an iodine deficiency. Iodine is the basic building block of the T3 and T4 hormones and thus an adequate iodine intake is essential for the proper functioning of the thyroid gland. When iodine intake is inadequate during infancy and
Related FAN Content :
-