Abstract
To assess brain cell apoptosis induced by high fluoride and/or low iodine in their offspring, 32 one-month old Wistar albino rats were divided randomly into four equal groups, each with six females and two males. The first group of rats served as the untreated controls; the second group received high fluoride (HiF) in their drinking water (100 mg NaF/L); the third group was placed on a low iodine (LI) diet (0.0855 mg I/kg); and the fourth group was exposed to the same concentrations of HiF and LI together. After the animal model was established, the rats were allowed to breed, and 36 offspring rats in each group were randomly selected for the experiments. The treatment for these second generation rats was the same as for their parents. At 0, 10, 30, 60, and 90 days after birth, these offspring rats were anesthetized and their brain cells prepared for flow cytometry. In comparison with the controls, the percent of brain cell apoptosis in the offspring rats in the three treated groups was obviously higher, especially in the HiF+LI group. With aging, brain cell apoptosis increased gradually in every group before the 30-day mark. These results indicate that cell apoptosis may play an important role in brain function affected by exposure to HiF, LI, and HiF+LI.
-
-
Effects of NaF on the expression of intracellular Ca2+ fluxes and apoptosis and the antagonism of taurine in murine neuron
Sodium fluoride (NaF) has been shown to be cytotoxic and produces inflammatory responses in humans. However, the cellular mechanisms underlying the neurotoxicity of fluoride are unclear. The present study aims to define a possible mechanism of NaF-induced neurotoxicity with respect to apoptosis and intracellular Ca(2+) fluxes. Meanwhile, the cytoprotective role
-
Proteomic analysis of brain proteins of rats exposed to high fluoride and low iodine.
Epidemiological investigations reveal that high fluoride and low iodine have strong adverse effects on the intelligence quotient (IQ) of children. Studies also report that in some high fluoride areas, iodine deficiency also exists, especially in China. Here, with the proteomic techniques, we first report on the proteomic changes in brain
-
A Scoping Review of Iodine and Fluoride in Pregnancy in Relation to Maternal Thyroid Function and Offspring Neurodevelopment
Iodine (I), an essential nutrient, is important for thyroid function and therefore growth and development. Fluoride (F), also an essential nutrient, strengthens bones and teeth, and prevents childhood dental caries. Both severe and mild-to-moderate I deficiency and high F exposure during development are associated to decreased intelligence quotient with recent
-
[Effects of high fluoride and low Iodine on learning-memory and TchE of brain in offspring rats].
Objective To study the effect of high level fluoride and low level iodine on learning-memory in offspring rats and possible mechanism. Methods Thirty-two Wistar rats were randomly divided into four groups each of eight (female:male=(3:1).) The rats were treated with high fluoride (100 and 150 mg NaF/L), low iodine (0.0855 mg/kg),
-
[Influence of combined iodine and fluoride on phospholipid and fatty acid composition in brain cells of rats].
OBJECTIVE: Investigating the influence of combined iodine and fluoride on phospholipid and fatty acid composition in brain cells of rats. METHODS: Five groups of rats were provided with deionized drinking water containing 0 and 150 mg/L NaF, and containing both 150 mg/L NaF and 0.003, 0.03 or 3 mg/L KI respectively
Related Studies :
-
-
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride Exposure Increases Metabolic Requirement for Magnesium
Fluoride's toxicity is significantly enhanced in the presence of nutritional deficiencies. Similarly, fluoride exposure increases the body's requirement for certain nutrients. An individual with a high intake of fluoride, for example, will need a proportional increase in calcium to avoid the mineralization defects (e.g., osteomalacia) that fluoride causes to bone
-
Fluoride Exposure Increases Metabolic Requirement for Calcium & Vitamin D
It is well known that individuals with nutrient deficiencies are more susceptible to fluoride toxicity, including fluoride's bone effects. As discussed in the following studies, fluoride increases the skeleton's need for calcium (and vitamin D) by increasing the amount of unmineralized tissue (osteoid) in the bone. When insufficient calcium and
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
Related FAN Content :
-