Abstract
Exposure to fluoride can induce low sperm quality; however, little is known about the molecular mechanisms by which fluoride exerts its toxic effects. This study was conducted to evaluate ultrastructure, oxidative stress, and apoptosis in sperm of mice treated with 150 mg/l NaF for 49 days. Furthermore, microarray analysis was also utilized to characterize the effects of fluoride in gene expression profiling on mice sperm. An increased ROS and a decreased TAC accompanied with distinct morphological changes and significant apoptosis were observed in mice sperm from the fluoride group. Fluoride exposure also significantly elevated the protein expressions of cytochrome c and active caspase-3. In global gene expression profiling, 34 up-regulated and 63 down-regulated genes, which are involved in several sperm biological processes including signal transduction, oxidative stress, apoptosis, electron transport, glycolysis, chemotaxis, spermatogenesis, and sperm capacitation, were significantly differentially expressed. Based on these findings, it was proposed that oxidative stress induced by excessive ROS may trigger sperm apoptosis through mitochondrial impairment, resulting in decreased fertility in mice exposed to fluoride. Microarray analysis also provided several important biological clues for further investigating fluoride-induced damage in sperm morphology and functions.
-
-
Toxic effects of sodium fluoride on reproductive function in male mice
To investigate the effects and possible mechanisms of the action of fluoride on testis cell cycle and cell apoptosis in male mice, sexually mature male Kunming mice were exposed to 50, 100, 200, and 300 mg NaF/L in their drinking water for 8 weeks. At the end of the exposure
-
Toxic effects of fluoride on reproductive ability in male rats: sperm motility, oxidative stress, cell cycle, and testicular apoptosis.
To investigate the effects of sodium fluoride (NaF) on sperm motility, oxidative stress, and apoptosis in the testes, male Wistar rats were exposed to 1.0, 2.0, and 3.0 mg NaF/kg bw/day by intragastric gavage for 90 days. Sperm motility was significantly inhibited, especially at the lower F intake level. Significant
-
Induction of oxidative stress on reproductive and metabolic organs in sodium fluoride-treated male albino rats: protective effect of testosterone and vitamin E coadministration
The present study was undertaken to search out the effect of sodium fluoride, a water pollutant noted throughout the world, including India, on oxidative stress induction in reproductive tissues, sperm pellet, and metabolic tissues like the liver and kidney. The protective effects of testosterone or vitamin-E coadministration were also observed
-
[The protective effects of a-lipoic acid on fluoride-induced reproductive lesion in rats via oxidative stress-mediated endoplasmic reticulum stress]
Objective: To determine the oxidative stress and endoplasmic reticulum stress and their changes after a-lipoic acid (a-LA) intervention, and to explore the effect and mechanism of fluoride-induced reproductive lesion. Methods: A total of 40 male Sprague-Dawley (SD) rats were randomly divided into four groups, control group(0.9% sodium chloride), a-LA group(100 mg/kg
-
Fluoride-induced oxidative stress and apoptosis are involved in the reducing of oocytes development potential in mice.
The present study was conducted to investigate the mechanisms of excessive-fluoride-induced reduction of oocyte development potential in mice. The development morphology of oocyte and the changes of pathomorphology in ovary were observed. The protein expression levels of apoptosis factors, including Bax, Bcl-2, casepase-3, casepase-9 and cytochrome c, and the mRNA
Related Studies :
-
-
-
Fluoride's Effect on Male Reproductive System -- The "Sprando/Collins" Anomaly
In contrast to the findings of over 60 animal studies from other research teams, a series of studies by FDA researchers Sprando & Collins reported virtually no evidence of reproductive toxicity among animals treated with very high levels of fluoride exposure. The reasons for this discrepancy remains unclear. Excerpts from Sprando/Collins' Studies: "This study
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
-
Fluoride's Effect on the Male Reproductive System -- In Vitro Studies
Carefully controlled in vitro studies have found that direct exposure of fluoride to the testes or semen inhibits testosterone production and damages sperm. While researchers have known since the 1930s that mega concentrations of fluoride can completely (but reversibly) immobilize sperm, it was not until the 1970s and 1980s that researchers found that relatively modest concentrations of fluoride could cause damage prior to complete immobilization.
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride's Effect on Male Reproductive System: Animal Studies
Over 60 studies on animals (including rats, mice, roosters, and rabbits) have found that fluoride adversely impacts the male reproductive system. These studies have repeatedly found the following effects: (1) decreases in testosterone levels; (2) reduced sperm motility; (3) altered sperm morphology; (4) reduced sperm quantity; (5) increased oxidative stress; (6) and reduced capacity to breed.
Related FAN Content :
-