Abstract
Combined treatment with sodium fluoride, calcium and vitamin D is claimed to be beneficial in some patients with osteoporosis. Fluoride alone leads to accumulation of unmineralised bone, producing the histological picture of osteomalacia. The addition of calcium or vitamin D, or both, is believed to prevent this complication. We report a case where osteomalacia developed during sodium fluoride treatment despite large doses of vitamin D and associated high plasma 25-hydroxyvitamin D (25-OHD) concentrations.
-
-
Effect of fluoride on aluminum-induced bone disease in rats with renal failure
Aluminum (Al) accumulation in renal failure is an etiological factor in the pathogenesis of low turnover bone disease. Aluminum-induced impairment of mineralization has been related to a reduced extent of active bone-forming surface. The present study investigated the effect of fluoride, a potent stimulator of osteoblast number, on the toxicity
-
Human vertebral bone: relation of strength, porosity, and mineralization to fluoride content
Radiographically normal vertebral bone cylinders from 80 male subjects were tested mechanicallly by static compression and analyzed for porosity, fluoride and ash content. As a group, they had low fluoride content, suggesting little prior intake, consonent with this geographic area. Nevertheless, increasing levels of fluoride were associated with bulkier bone,
-
Effects of dialysate calcium and fluoride on bone disease during regular hemodialysis
A previous study indicated that, in patients maintained by hemodialysis, clinically and roentgenographically apparent bone disease appeared almost exclusively when the dialystate calcium concentration was less than 5.7 mg per 100 ml. In the present study, bone biopsy specimens from the iliac crest were studied at the beginning and end
-
Effect of variations in calcium intake on the skeleton of fluoride-fed kittens
Kittens were fed fluoride (2.5 mg. per kilogram of body weight) for 2 months. In one group of animals the addition of calcium (20 mg. per kilogram) to an otherwise calcium-deficient diet resulted in a depressed serum calcium, abnormally wide osteroid tissue, and increased formation and resorption of bone. In
-
Effects of fluoride on bone in chronic renal failure
Fluoride is concentrated in the bones of patients with chronic renal failure when fluoridated water is used during hemodialysis. Excessive osteoid is produced that is not normally mineralized and severe osteomalacia occurs. Electron microscopical examination of iliac crest bone biopsy specimens from four patients suggests that fluoride induces the synthesis
Related Studies :
-
-
-
Similarities between Skeletal Fluorosis and Renal Osteodystrophy
It is quite possible, and indeed likely, that some kidney patients diagnosed with renal osteodystrophy are either suffering from skeletal fluorosis or their condition is being complicated/exacerbated by fluoride exposure.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride Increases Osteoid Content of Bone
Fluoride's ability to increase the osteoid content of bone is now undisputed. Osteoid is an unmineralized tissue in bone that, in the normal bone remodeling process, ultimately becomes calcified. As some observers have noted, "[t]he main histological change induced by fluoride is the increase of osteoid volume." (Arnala 1985). One way fluoride
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
Related FAN Content :
-