Abstract
The most important aspect of therapy with fluoride and tamoxifen concerns its influence on bone tissue and lipid metabolism. The aim of the study was to evaluate the effect of tamoxifen and natrium fluoride (NaF) on bone metabolism, biochemical properties and blood lipids levels in ovariectomized rats. The study was performed in Wistar rats divided into 5 subgroups: ovariectomized controls, rats treated with NaF 20 mg/kg/24 hr, rats treated with NaF 20 mg/kg/24 hr+tamoxifen 2 mg/kg/24 hr, rats treated with NaF 20 mg/kg/24 hr plus tamoxifen 4 mg/kg/24 hr, and sham-operated controls. In ovariectomized rats the increase of total cholesterol, low-density lipoproteins cholesterol (LDL-cholesterol) as well as the decrease of bone mineral content, bone mineral density and biomechanical properties was observed. The therapy with NaF increased the level of total cholesterol, LDL-cholesterol, triglycerides, bone mineral density, bone mineral content. In this group the decrease of bone strength and stiffness was observed. The administration of tamoxifen reduced the changes in plasma lipid levels, but did not improve the biomechanical properties of bone tissue.
-
-
Femoral fractures in fluoride-induced osteoporosis: an update
In 1984, we reported 16 postmenopausal patients with osteoporotic vertebral fractures treated with Na fluoride (NaF), calcium (Ca) and vitamin D (D). We noted relative freedom from vertebral fractures during treatment, but a disturbing incidence of femoral fractures. We now report the current status of 17 pts followed closely on
-
The relationship of bone mass and fracture history to fluoride and calcium intake: a study of three communities
Stimulated by the suggestion that water fluoride greater than 1 mg/L may protect against osteoporosis, we studied bone mass of women in three rural communities with differing mineral content of the water supply. Mean fluoride and calcium of community drinking waters were 4 mg/L and 16 mg/L, respectively, high fluoride
-
Denser but Not Stronger? Fluoride-Induced Bone Growth and Increased Risk of Hip Fractures.
Abstract Since the mid-1940s, fluoride has been added to toothpaste and (in some countries) tap water, table salt, or milk to reduce dental cavities.1 Although low-level fluoride supplementation prevents cavities, higher levels cause white mottling of the teeth.2 What is more, some studies suggest fluoride in drinking water may increase the
-
Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis
Although fluoride increases bone mass, the newly formed bone may have reduced strength. To assess the effect of fluoride treatment on the fracture rate in osteoporosis, we conducted a four-year prospective clinical trial in 202 postmenopausal women with osteoporosis and vertebral fractures who were randomly assigned to receive sodium fluoride
-
Treatment of postmenopausal osteoporosis with slow-release sodium fluoride. Final report of a randomized controlled trial
OBJECTIVE: To test whether slow-release sodium fluoride inhibits spinal fractures and is safe to use. DESIGN: Placebo-controlled randomized trial. INTERVENTIONS: Slow-release sodium fluoride, 25 mg twice daily, in four 14-month cycles (12 months receiving sodium fluoride followed by 2 months not receiving it) compared with placebo. Calcium citrate, 400 mg calcium twice daily, continuously in
Related Studies :
-
-
-
Fluoride Reduces Bone Strength Prior to Onset of Skeletal Fluorosis
The majority of animal studies investigating fluoride's impact on bone strength have found that fluoride has either no effect, or a detrimental effect, on bone strength. Importantly, several of the animal studies that have found fluoride reductes bone strength have reported that this reduction in strength occurs before signs of skeletal fluorosis
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride Content of Bone Impairs Bone Quality
Water Fluoridation Increases the Fluoride Content of Bone "Fluoride analyses of the cadaver material from Kuopio revealed that fluoridation of drinking water increases the fluoride concentration in bone. In some individual cases the amount of fluoride in trabecular bone may rise to relatively high levels, notably in patients with impaired renal
-
Fluoride in Water & Bone Fracture
Current epidemiological evidence indicates that the margin of safety between the level of fluoride in water that does, and does not, increase the risk of fracture is insufficiently large to protect all members of society from fluoride-induced damage to bone.
-
Fluoride & Spontaneous Hip Fractures in Osteoporosis Patients
Due to its ability to increase vertebral bone mass, fluoride has been used as an experimental treatment for osteoporosis (doses > 20 mg/day). Fluoride treatment, however, proved far more harmful than beneficial. Not only was fluoride therapy shown to increase fracture rates among the treated patients, it was also found to
Related FAN Content :
-