Abstract
The use of fluoridated products has significantly contributed to the reduction in rates of dental caries. However, excessive sodium fluoride (NaF) intake promotes inhibition of glycolysis, decrease in insulin secretion, hyperglycemia, and insulin resistance. Seven-week-old castrated male Wistar rats were used to evaluate the chronic effect of NaF on insulin sensitivity, insulin signal transduction in white adipose tissue (WAT), and plasma TNF-a and resistin concentrations. The animals were randomly divided into two groups: (1) control group (CN); (2) fluoride (F) group, which was treated with NaF in the drinking water and F in the food pellets (estimated total F intake: 4.0 mg/kg bw/day). After 42 days, an intravenous insulin tolerance test (0.75 U/kg), plasma TNF-a and resistin quantification analysis, and insulin receptor substrate (pp185 – IRS-1/IRS-2) tyrosine phosphorylation and IRS-1 serine phosphorylation status tests in WAT were performed. The chronic treatment with F promoted: (1) decrease in pp185 (IRS-1/IRS-2) tyrosine phosphorylation status in the WAT; (2) increase in IRS-1 serine phosphorylation status in the WAT; (3) increase in plasma concentrations of TNF-a and resistin; and (4) decrease in insulin sensitivity.
-
-
Chronic fluoride’s impact on pancreatic islet cells in workers.
Decreasing of the insulin concentration and increasing of the C-peptide level in blood serum of 72 workers of cryolytes industries detected by radioimmunilogical method. These changes were caused by the fluorine intoxication of workers.
-
Effect of fluoride intake on carbohydrate metabolism, glucose tolerance, and insulin signaling.
Fluoride is known to cause both local and systemic alterations in animals and humans, such as dental fluorosis and disturbances in glucose homeostasis. The effects of fluoride are dose dependent and can produce decreased insulin secretion, inhibition of glycolysis, glycogen depletion, hyperglycemia, and insulin resistance. Because excessive ingestion of fluoride
-
Low-level fluoride exposure increases insulin sensitivity in experimental diabetes
The effect of chronic fluoride (F) exposure from the drinking water on parameters related to glucose homeostasis was investigated. Wistar rats were randomly distributed into 2 groups (diabetic [D] and nondiabetic [ND]; n = 54 each). In D, diabetes was induced with streptozotocin. Each group was further divided into 3
-
Effects of fluoride on metabolism and mechanical properties of rat bone
Young rats were maintained, over a 2-week period, on laboratory chow and distilled water or water supplemented with 200 ppm fluoride. Metaphyseal and diaphyseal bone of the femurs and tibias of control and treated rats were analyzed. After fluoride treatment there was a decrease of lipid and citrate content and
-
Toxicity of fluoride to diabetic rats
SUMMARY: Wistar rats were given 20 ppm fluoride in drinking water, or single administration of 115 mg/kg alloxan i.m. to induce diabetes, or single administration of 115 mg/kg alloxan i.m. followed by 20 ppm fluoride for 31 days. Blood sugar level increased in rats given alloxan and alloxan + fluoride.
Related Studies :
-
-
-
Fluoride Sensitivity Among Diabetics
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism “The present study showed that aortae and mesenteric arteries from streptozotocin-induced diabetic rats exhibited greater contractions
-
NRC (2006): Fluoride's Effect on Glucose Metabolism
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism The following discussion is from pages 258-260 of the NRC’s report’s “Fluoride in Drinking Water: A Scientific
-
Fluoride & Insulin
Insulin is a hormone produced by the pancreas that is responsible for maintaining appropriate levels of glucose in the blood. Insulin allows the body’s cells to take up glucose from the blood, and either use it as an energy source or store it as glycogen. Blood glucose levels in diabetics
-
Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism Excessive exposure to fluoride causes a defect of the tooth enamel known as dental fluorosis. In
-
Fluoride & Impaired Glucose Tolerance
The proper regulation of blood glucose levels is essential to good health. When the body's ability to regulate blood glucose levels falters, as occurs in diabetes mellitus, chronic elevated glucose levels (hyperglycemia) can lead to serious complications. These consequences include damage to the kidneys, nervous system, cardiovascular system, retina, legs
Related FAN Content :
-