Abstract
Fluoride intoxication and dexamethasone treatment produce deleterious effects in bone and brain. The aim of this study was to evaluate the effect of fluoride (F) and dexamethasone (Dex) co-exposure on oxidative stress and apoptosis in osteoblast-like MC3T3-E1 and hippocampal HT22 cell lines. Co-exposure to F and Dex resulted in a concentration-dependent decrease in cell viability, induction of apoptosis and increased generation of reactive oxygen species (ROS) and nitric oxide (NO) following 72 h of incubation. Fluoride-induced apoptosis in MC3T3-E1 and HT22 cells was attenuated by catalase and L-NNMA, indicating a role for H2O2 and NO as mediators of cytotoxicity. Dexamethasone-induced apoptosis was associated with H2O2 generation in both cell lines and it was attenuated during co-incubation with catalase. These data indicate that co-exposure to F and Dex amplifies their respective cytotoxicity in H2O2- and NO-dependent manner. As flavonoid fisetin prevented F- and Dex-induced cytotoxicity the potential role of this product in pharmacology and diet may be considered.
-
-
Interplay of glia activation and oxidative stress formation in fluoride and aluminium exposure.
BACKGROUND: Oxidative stress formation is pivotal in the action of environmental agents which trigger the activation of glial cells and neuroinflammation to stimulate compensatory mechanisms aimed at restoring homeostasis. AIM: This study sets to demonstrate the interplay of fluoride (F) and aluminium (Al) in brain metabolism. Specifically, it reveals how oxidative
-
[Influence of free radical inducer on the level of oxidative stress in brain of rats with fluorosis].
OBJECTIVE: To study changes in content of lipid peroxide and composition of fatty acids in the brain of rats affiliated with chronic fluorosis after treatment with free radical inducer (ferric ion). METHODS: Thirty-six Wistar rats were divided into three groups, fed with similar fodder and varied concentrations of fluoride in drinking
-
Black berry juice attenuates neurological disorders and oxidative stress associated with concurrent exposure of aluminum and fluoride in male rats
The objective of this study was to assess the protective effect of black berry juice (BBJ) on the neurological disorders and oxidative stress induced by co-exposure to ALCL3 and NaF in male albino rats. Administration of either AlCl3 (200?mg/kg bw) or NaF (10?mg/kg bw) or both of them caused a
-
A possible mechanism for combined arsenic and fluoride induced cellular and DNA damage in mice
Arsenic and fluoride are major contaminants of drinking water. Mechanisms of toxicity following individual exposure to arsenic or fluoride are well known. However, it is not explicit how combined exposure to arsenic and fluoride leads to cellular and/or DNA damage. The present study was planned to assess (i) oxidative stress
-
Alterations in the memory of rat offspring exposed to low levels of fluoride during gestation and lactation: Involvement of the a7 nicotinic receptor and oxidative stress.
Daily exposure to fluoride (F) depends mainly on the intake of this element with drinking water. When administered during gestation and lactation, F has been associated with cognitive deficits in the offspring. However, the mechanisms underlying the neurotoxicity of F remain obscure. In the current study, we investigated the effects
Related Studies :
-
-
-
Fluoride's Effect on Osteoblasts (Bone-Forming Cells)
As noted by the National Research Council, "[p]erhaps the single clearest effect of fluoride on the skeleton is its stimulation of osteoblast proliferation." (NRC 2006). Osteoblasts are bone-forming cells. "Stimulatory effects of fluoride on osteoblasts result in formation of osteoid, which subsequently undergoes mineralization." (Fisher RL, et al. 1989). If the new
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride Increases Osteoid Content of Bone
Fluoride's ability to increase the osteoid content of bone is now undisputed. Osteoid is an unmineralized tissue in bone that, in the normal bone remodeling process, ultimately becomes calcified. As some observers have noted, "[t]he main histological change induced by fluoride is the increase of osteoid volume." (Arnala 1985). One way fluoride
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
Related FAN Content :
-