Abstract
Two experiments were conducted in order to determine if challenge testing, a procedure developed by clinical allergists, could be used to provoke behavioral reactions to chemicals found in municipal waters. In one experiment, 10 male and 32 female volunteers tracked a moving target and monitored lights after
receiving sublingual drops that contained only water or varying amounts of sodium fluoride and nitrate. Dosage levels in this experiment equaled, exceeded, or fell below those found in municipal waters. In a second experiment, 20 females performed this task after receiving sublingual drops of the same test substances in a repeated measures design; dosage levels equaled or exceeded levels found in municipal waters by 100 or 500 times, Neither type nor amount of chemical affected primary task performance; however, after receiving sublingual drops in the first (between-subjects) experiment, subjects paid less attention to lights on their right. In the second experiment, subjects made more errors and had longer
response latencies after they received moderate and very high concentrations of the test substances. It was concluded that challenge testing is a safe but effective technique for provoking and studying reactions to chemicals when it is combined with a sensitive measure of sensorimotor performance.
-
-
Effects of high fluoride on neonatal neurobehavioral development.
The effects of excessive fluoride intake during pregnancy on neonatal neurobehavioral development and the neurodevelopment toxicity of fluoride were evaluated. Ninety-one normal neonates delivered at the department of obstetrics and gynecology in five hospitals of Zhaozhou County, Heilongjiang Province, China were randomly selected from December 2002 to January 2003. The subjects were divided into two groups (high
-
The effect of small quantities of fluorine on the human body
Clinical and physiological observations were made of school children in an endemic [area] where the fluorine content of water was within 1.6 mg/l. Stomatological examinations show that the prolonged use of drinking water containing these concentrations of fluorine causes among the children lesions of dental enamel of the I and
-
Effect of fluoride exposure on anxiety- and depression-like behavior in mouse.
Highlights Anxiety-like behavior was significantly altered in the mice exposed to NaF for 120 days. Depression-like behavior was significantly altered in the 120 days NaF treated mice. NaF significantly altered mRNA expression levels of anxiety- and depression-like related genes in the hippocampus. Fluoride led to an imbalance between excitation and
-
Investigation on the role of Spirulina platensis in ameliorating behavioural changes, thyroid dysfunction and oxidative stress in offspring of pregnant rats exposed to fluoride.
Highlights Sodium fluoride exposure from pregnancy to lactation induces thyroid toxicity. This can affect neurodevelopment and induce behavioural changes. Spirulina platensis role in reversing fluoride-induced toxicity was ascertained. Significant protection was exerted by Spirulina The study investigated the role of Spirulina platensis in reversing sodium fluoride-induced thyroid, neurodevelopment and oxidative alterations
-
Influence of fluoride exposure on reaction time and visuospatial organization in children
Fluoride exposure is an important public health problem in several Mexican states. In the city of San Luis Potosi, Mexico, above 90% of the children have some degree of dental fluorosis. The main source of exposure to fluoride is tap water. The objective of the study was to evaluate the
Related Studies :
-
-
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride & IQ: 67 Studies
As of May 2020, a total of 75 studies have investigated the relationship between fluoride and human intelligence. Of these investigations, 67 studies have found that elevated fluoride exposure is associated with reduced IQ in humans, while over 60 animal studies have found that fluoride exposure impairs the learning and/or
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
Related FAN Content :
-