Abstract
Two experiments were conducted in order to determine if challenge testing, a procedure developed by clinical allergists, could be used to provoke behavioral reactions to chemicals found in municipal waters. In one experiment, 10 male and 32 female volunteers tracked a moving target and monitored lights after
receiving sublingual drops that contained only water or varying amounts of sodium fluoride and nitrate. Dosage levels in this experiment equaled, exceeded, or fell below those found in municipal waters. In a second experiment, 20 females performed this task after receiving sublingual drops of the same test substances in a repeated measures design; dosage levels equaled or exceeded levels found in municipal waters by 100 or 500 times, Neither type nor amount of chemical affected primary task performance; however, after receiving sublingual drops in the first (between-subjects) experiment, subjects paid less attention to lights on their right. In the second experiment, subjects made more errors and had longer
response latencies after they received moderate and very high concentrations of the test substances. It was concluded that challenge testing is a safe but effective technique for provoking and studying reactions to chemicals when it is combined with a sensitive measure of sensorimotor performance.
-
-
Effects of developmental fluoride exposure on rat ultrasonic vocalization, acoustic startle reflex and pre-pulse inhibition
Rats receiving fluoride during the whole pregnancy up to the 9th day of lactation showed, when isolated at 10th day of life, a reduced rate of ultrasonic vocalizations (UV) in male pups (NaF 5.0 mg) and, in 90th days male rats, an increase of the Pre-Pulse Inhibition (PPI) with a reduction of
-
Effects of high fluoride on neonatal neurobehavioral development.
The effects of excessive fluoride intake during pregnancy on neonatal neurobehavioral development and the neurodevelopment toxicity of fluoride were evaluated. Ninety-one normal neonates delivered at the department of obstetrics and gynecology in five hospitals of Zhaozhou County, Heilongjiang Province, China were randomly selected from December 2002 to January 2003. The subjects were divided into two groups (high
-
Exposure to fluoridated water and attention deficit hyperactivity disorder prevalence among children and adolescents in the United States: an ecological association
Background: Epidemiological and animal-based studies have suggested that prenatal and postnatal fluoride exposure has adverse effects on neurodevelopment. The aim of this study was to examine the relationship between exposure to fluoridated water and Attention-Deficit Hyperactivity Disorder (ADHD) prevalence among children and adolescents in the United States. Methods: Data on ADHD
-
Fluoride exposure causes behavioral, molecular and physiological changes in adult zebrafish (Danio rerio) and their offspring.
Fluoride exposure through drinking water, foods, cosmetics, and drugs causes genotoxic effects, oxidative damage, and impaired cognitive abilities. In our study, the effects of fluoride on anxiety caused by the circadian clock and circadian clock changes in a zebrafish model were investigated at the molecular level on parents and the
-
The effect of fluorine exposure of pregnant rats on the learning and memory capabilities of baby rats
Objective: Explore the effect and possible mechanisms of fluorine exposure of pregnant rats passing through placental barriers on the learning and memory capabilities of baby rats. Method: Open field behavior and a water maze test were used to observe the effects on the spontaneous behavior and learning and memory on baby
Related Studies :
-
-
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
Related FAN Content :
-