Abstract
To determine the carcinogenic potential of sodium fluoride (NaF), we fed Sprague-Dawley rats a diet containing NaF for up to 99 weeks. Rats receiving NaF at a dose of 4, 10, or 25 mg/kg per day added to a low-fluoride diet were compared with controls receiving either a low-fluoride diet or laboratory chow. Each treatment group consisted of 70 rats of each sex. A 30% decrement in weight gain occurred at an NaF dose of 25 mg/kg per day. Evidence of fluoride toxicity was seen in the teeth, bones, and stomach, and the incidence and severity of these changes were related to the dose of NaF and the duration of exposure. Despite clear evidence of toxicity, NaF did not alter the incidence of preneoplastic and neoplastic lesions at any site in rats of either sex. Results from this study indicate that NaF is not carcinogenic in Sprague-Dawley rats.
-
-
Lack of DNA damage induced by fluoride on mouse lymphoma and human fibroblast cells by single cell gel (comet) assay
Fluoride has widely been used in Dentistry because it is a specific and effective caries prophylactic agent. However, excess fluoride may represent a hazard to human health, especially by causing injury on genetic apparatus. Genotoxicity tests constitute an important part of cancer research for risk assessment of potential carcinogens. In
-
DNA damage induced by fluoride in rat kidney cells.
DNA damage by fluoride to newborn rat kidney cells isolated by enzymic digestion is reported. The cells were exposed for 24 hr to sodium fluoride at NaF concentrations of 0, 0.2, 0.4, 0.8, and 1.0 mM. Damage to DNA was determined by single cell gel electrophoresis assay (Comet assay). Significant breakage of DNA strands
-
The mutagenicity of sodium fluoride to L5178Y [wild-type and TK+/- (3.7.2c)] mouse lymphoma cells
L5178Y wild-type and TK+/- (3.7.2c) cells were treated with sodium fluoride over a range of concentrations (10-500 micrograms ml-1) and treatment times (4, 16 and 48 h) covering less than 10-100% survival. The mutant frequency at five genetic loci (resistance to ouabain, 6-thioguanine, excess thymidine, methotrexate and 1-beta-D-arabinofuranosyl cytosine) was
-
Sodium fluoride and chromosome damage (in vitro human lymphocyte and in vivo micronucleus assays)
The clastogenic potential of sodium fluoride was determined both in vitro (using cultured human lymphocytes) and in vivo (using the rat bone-marrow micronucleus test). The incidence of chromosome aberrations in human lymphocyte cultures exposed to 20 or 40 micrograms/ml sodium fluoride (3 and 9% respectively) was significantly increased compared with
-
Effect of sodium fluoride on tumor growth
Recently a report (1) from this laboratory indicated that NaBr in relatively low concentrations accelerated the growth of mouse and egg cultivated tumor tissue. This result occurred when the drug was introduced by way of the drinking water in mice, by injection over the embryonic membranes of eggs inoculated with
Related Studies :
-
-
-
NTP Bioassay on Fluoride/Cancer (1990)
In 1977, the U.S. Congress requested that animal studies be conducted to determine if fluoride can cause cancer. The result of the Congressional request was an extensive animal study conducted in the 1980s by the National Toxicology Program (NTP) and published in 1990. The main finding of NTP's study was a dose-dependent increase in osteosarcoma (bone cancer) among the fluoride-treated male rats.
-
Fluoride & Osteosarcoma: A Timeline
Several human epidemiological studies have found an association between fluoride in drinking water and the occurrence of osteosarcoma (bone cancer) in young males. These studies are consistent with the National Toxicology Program's (NTP) cancer bioassay which found that fluoride-treated male rats had an dose-dependent increase in osteosarcoma. Although a number of studies have failed to detect an association between fluoride and osteosarcoma, none of these studies have measured the risk of fluoride at specific windows in time, which based on recent results, is the critical question with respect to fluoride and osteosarcoma.
-
Fluoride's Mutagenicity: The "Oral Health Research Institute's" Studies
Although many in vitro and in vivo studies have detected mutagenic effects from fluoride exposure, the Oral Health Research Institute at Indiana University's School of Dentistry has repeatedly failed to find any such effect in multiple studies on the subject.
-
A Critique of Gelberg's Study on Fluoride/Osteosarcoma in New York
The case-control study by Gelberg, published first as a PhD dissertation and then later in two peer-reviewed journals, may represent the most substantive study on fluoride/osteosarcoma previous to Bassin’s 2001 analysis. In assessing Gelberg’s data, we were at first struck by the existence of several notable errors in both the thesis and papers. While these errors do raise questions about the study, our primary concern with Gelberg’s work relates to the methods she used to analyze her data.
-
Fluoride/Osteosarcoma Link Is Biologically Plausible
The "biological plausiblility" of a fluoride-osteosarcoma link is widely acknowledged in the scientific literature. The biological plausibility centers around three facts: 1) Bone is the principal site of fluoride accumulation, particularly during the growth spurts of childhood; 2) Fluoride is a mutagen when present at sufficient concentrations, and 3) Fluoride can stimulate the proliferation of osteoblasts (bone-forming cells).
Related FAN Content :
-