Abstract
Don Chinese-hamster cells were treated with 25, 50, or 75 micrograms/milliliter (microg/ml) of sodium-fluoride (7681494) to determine the chromosomal effects of fluoride exposure on these cells. Cultures were assayed at 12, 24, and 36 hours after initiation of treatment. Chromosomal aberrations were recorded for all the concentrations used. Maximum effect at all concentrations was observed after 24 hours of treatment. Several kinds of abnormalities were revealed with the main ones being bridges, double bridges, sidearm bridges, bridges with fragments, tripolar and multipolar anaphases with and without bridges, fragments, and laggards. “Y” and “X” configurations were also noted at metaphase. No significant differences were noted for different concentrations of sodium-fluoride, while the difference between treated and control cultures was significant at the 5 percent probability level. The authors suggest that bridges scored in anaphase/telophase may result from stickiness of chromosomes or from exchanges between chromosomes or chromatids. Fluoride may be responsible for disruption of microtubules causing “Y” and “X” type configurations to occur in metaphase, since sodium-fluoride affects the rate of protein synthesis and since the mitotic spindle fibers are composed of proteins. The authors conclude that sodium-fluoride may be considered to be clastogenic in these cells.
-
-
Toxicity assessment of sodium fluoride in Drosophila melanogaster after chronic sub-lethal exposure
Sodium fluoride (NaF), one of the most frequently used fluoride compound is composed of Na+ and F-. Apart from its use in water fluoridation, NaF also acts as a major component for different dental products like toothpastes, gels and mouth rinses etc. The present study was carried out to explore the toxic impact of chronic
-
Investigation of the anti-genotoxic effect of ocimum sanctum in fluoride induced genotoxicity
The present study was designed to investigate the anti-genotoxic effect of Ocimum sanctum on fluoride induced genotoxicity and its impact on oxidative stress. Exposure to fluoride can mainly occur through drinking water when the levels far exceed the permissible limit. Fluorosis is a serious problem the world over resulting in
-
The effects of atmospheric hydrogen fluoride upon Drosophila melanogaster. II. Fecundity, hatchability and fertility
Two strains of Drosophila melanogaster were treated with sub-lethal levels of gaseous hydrogen fluoride for six weeks. Egg samples were collected at various times for hatchability determinations. Adults reared from these samples were evaluated for fecundity and fertility. Treatment with HF caused a marked reduction in hatchability and fecundity in
-
Sister chromatid exchange frequency and chromosome aberrations in residents of fluoride endemic regions of South Gujarat
Peripheral blood lymphocytes of residents of three villages and one nearby township in South Gujarat with fluoride concentrations in the drinking water of 1.56 - 3.46 and 0.6 - 0.8 ppm, respectively, were examined for their frequency of sister chromatid exchanges (SCE) and chromosome aberra-tions. The rates of SCEs and
-
Mutual interactions among ingredients of betel quid in inducing genotoxicity on Chinese hamster ovary cells
The purpose of this study is to explore the mutual interactions among the chemical ingredients of betel quid including arecoline, sodium fluoride, catechin and glycyrrhizin in producing genotoxicity on Chinese hamster ovary (CHO) cells using the micronucleus method. Our results show that arecoline at a rather low concentration of 0.2-2
Related Studies :
-
-
-
Fluoride & Liver Cancers in NTP Bioassay
On October 28, 1988, Battelle Columbus Laboratories submitted its Final Report to the NTP concerning the results of the Mouse study. The principal finding of Battelle's report was that a dose-dependent increase of a rare liver cancer (hepatocholangiocarcinoma) had occurred in the fluoride-treated male and female mice.
-
Fluoride's Mutagenicity: In vitro Studies
According to the National Toxicology Program, "the preponderance of evidence" from laboratory "in vitro" studies indicate that fluoride is a mutagenic compound. Many substances which are mutagens, are also carcinogens (i.e. they can cause cancer). As is typical for in vitro studies, the concentrations of fluoride that have generally been tested
-
Fluoride/Osteosarcoma Link Is Biologically Plausible
The "biological plausiblility" of a fluoride-osteosarcoma link is widely acknowledged in the scientific literature. The biological plausibility centers around three facts: 1) Bone is the principal site of fluoride accumulation, particularly during the growth spurts of childhood; 2) Fluoride is a mutagen when present at sufficient concentrations, and 3) Fluoride can stimulate the proliferation of osteoblasts (bone-forming cells).
-
Fluoride's Mutagenicity: The "Oral Health Research Institute's" Studies
Although many in vitro and in vivo studies have detected mutagenic effects from fluoride exposure, the Oral Health Research Institute at Indiana University's School of Dentistry has repeatedly failed to find any such effect in multiple studies on the subject.
-
A Critique of Gelberg's Study on Fluoride/Osteosarcoma in New York
The case-control study by Gelberg, published first as a PhD dissertation and then later in two peer-reviewed journals, may represent the most substantive study on fluoride/osteosarcoma previous to Bassin’s 2001 analysis. In assessing Gelberg’s data, we were at first struck by the existence of several notable errors in both the thesis and papers. While these errors do raise questions about the study, our primary concern with Gelberg’s work relates to the methods she used to analyze her data.
Related FAN Content :
-