Abstract
The genotoxic effects of inorganic fluorides were investigated by treating cultured rat bone marrow cells with varying concentrations (0.1-100 microM) of potassium fluoride (KF) and sodium fluoride (NaF) for different durations (12, 24 and 36 h) and measuring the incidence of cells with aberrations and number of breaks per cell. Both forms of fluoride were found to be weak mutagens relative to the positive control N-methyl-N-nitro-N-nitrosoguanidine (MNNG). A specificity of fluoride ion in inducing chromosome aberrations (CA) was indicated by the observation that both NaF and KF behaved almost equivalently in this study and at significantly higher variations from the results with potassium chloride (KCl) and sodium chloride (NaCl).
-
-
Cytogenetic effect of inorganic fluorine compounds on human and animal cells in vivo and in vitro
The object of this study was the mutagenic effect of hydrogen fluoride, cryolite and their mixtures on chromosomes of cells of animals subjected to the inhalation of these compounds and also the mutagenic effect of sodium fluoride on cells of human leucocyte cultures. An increase from 1.24 (in the control) to
-
Investigation of the genotoxic effects of fluoride on a bone tissue model .
Fluorides are thought to be a major cause of osteocarcinogenesis, due to their widespread industrial use, ability to accumulate in bone tissue, and genotoxic and probable carcinogenic properties. In vitro experiments investigating the genotoxic potential of fluorides in bone tissue models can provide valuable indirect information on their involvement in
-
Cytogenetic studies of sodium fluoride in mice
The cytogenetic effects of sodium fluoride (NaF) were measured in mice following administration in the drinking water for 6 weeks. Bone fluoride levels were determined and showed a dose-related incorporation of fluoride. Micronuclei were measured in peripheral blood erythrocytes following 1 and 6 weeks of NaF administration. Bone marrow cell
-
Clastogenic activity of sodium fluoride in great ape cells
Conflicting evidence has been reported concerning the mutagenicity of sodium fluoride (NaF), especially clastogenicity at concentrations of more than 1 mM. NaF is known to induce chromosome aberrations at these concentrations in human cells, but not in most rodent cells. We considered that such species-specific difference in chromosomal sensitivity would
-
Transforming activities of sodium fluoride in cultured Syrian hamster embryo and BALB/3T3 cells
The transforming activity of sodium fluoride was studied in the SHE and the BALB/3T3 cell culture systems. Initiating and promoting activities were then investigated by means of the orthogonal methodology. Sodium fluoride was found to induce morphological transformation of SHE cells seeded on a feeder layer of X-irradiated cells at
Related Studies :
-
-
-
Fluoride & Liver Cancers in NTP Bioassay
On October 28, 1988, Battelle Columbus Laboratories submitted its Final Report to the NTP concerning the results of the Mouse study. The principal finding of Battelle's report was that a dose-dependent increase of a rare liver cancer (hepatocholangiocarcinoma) had occurred in the fluoride-treated male and female mice.
-
NTP Bioassay on Fluoride/Cancer (1990)
In 1977, the U.S. Congress requested that animal studies be conducted to determine if fluoride can cause cancer. The result of the Congressional request was an extensive animal study conducted in the 1980s by the National Toxicology Program (NTP) and published in 1990. The main finding of NTP's study was a dose-dependent increase in osteosarcoma (bone cancer) among the fluoride-treated male rats.
-
Fluoride/Osteosarcoma Link Is Biologically Plausible
The "biological plausiblility" of a fluoride-osteosarcoma link is widely acknowledged in the scientific literature. The biological plausibility centers around three facts: 1) Bone is the principal site of fluoride accumulation, particularly during the growth spurts of childhood; 2) Fluoride is a mutagen when present at sufficient concentrations, and 3) Fluoride can stimulate the proliferation of osteoblasts (bone-forming cells).
-
Micronucleus and Sister Chromatid Exchange Frequency in Endemic Fluorosis
The rise of sister chromatid exchange (SCE) and micronucleus (MN) in the peripheral blood lymphocytes of the fluorine-intoxicated patients indicates that fluorine is a mutagenic agent which can cause DNA and chromosomal damage.
-
Fluoride's Mutagenicity: In vivo Studies
Consistent with dozens of in vitro studies, a number of in vivo studies, in both humans and animals, have found evidence of fluoride-induced genetic damage. In particular, research on humans exposed to high levels of fluoride have found increased levels of "sister chromatid exchange" (SCE). As noted in one study: "In
Related FAN Content :
-