Fluoride Action Network

Abstract

A large fraction of chemicals observed to cause cancer in experimental animals is devoid of mutagenic activity. It is therefore of importance to develop methods that can be used to detect and study environmental carcinogenic agents that do not interact directly with DNA. Previous studies have indicated that induction of in vitro cell transformation and inhibition of gap junction intercellular communication are endpoints that could be useful for the detection of non-genotoxic carcinogens. In the present work, 13 compounds [chlordane, Arochlor 1260, di(2-ethylhexyl)phthalate, 1,1,1-trichloro-2, 2-bis(4-chlorophenyl)ethane, limonene, sodium fluoride, ethionine, o-anisidine, benzoyl peroxide, o-vanadate, phenobarbital, 12-O-tetradecanoylphorbol 13-acetate and clofibrate] have been tested for their ability to induce morphological transformation and affect intercellular communication in Syrian hamster embryo cells. The substances were selected on the basis of being proven or suspected non-genotoxic carcinogens, and thus difficult to detect in short-term tests. The data show that nine of the 13 compounds induced morphological transformation, and seven of the 13 inhibited intercellular communication in hamster embryo cells. Taken together, 12 of the 13 substances either induced transformation or caused inhibition of communication. The data suggest that the combined use of morphological transformation and gap junction intercellular communication in Syrian hamster embryo cells may be beneficial when screening for non-genotoxic carcinogens.