Abstract
The present study was aimed to evaluate curcumin as a potential natural antioxidant to mitigate the genotoxic effects of arsenic (As) and fluoride (F) in human peripheral blood lymphocytes. The study was divided into nine groups consisting of negative control, positive control treated with ethyl methane sulphonate (EMS; 1.93 mM) and curcumin control with only curcumin (1.7 microM) in blood culture. As (1.4 microM) and F (34 microM) were added alone as well as in combination, to the cultures, with and without curcumin. Cultures were analysed for chromosomal aberrations (both structural and numerical) and primary DNA damage via comet assay as the genotoxic parameters after an exposure duration of 24h. Results revealed that curcumin efficiently ameliorates the toxic effect of As and F by reducing the frequency of structural aberrations (>60%), hypoploidy (>50%) and primary DNA damage. In conclusion, curcumin mitigates the genotoxic effects of the two well known water contaminants (As and F) effectively and efficiently at the given concentration in vitro.
-
-
A possible mechanism for combined arsenic and fluoride induced cellular and DNA damage in mice
Arsenic and fluoride are major contaminants of drinking water. Mechanisms of toxicity following individual exposure to arsenic or fluoride are well known. However, it is not explicit how combined exposure to arsenic and fluoride leads to cellular and/or DNA damage. The present study was planned to assess (i) oxidative stress
-
Amelioration by melatonin of chromosomal anomalies induced by arsenic and/or fluoride in human blood lymphocyte cultures
Standard cytochemical methods were used to investigate the ameliorative effect of melatonin (0.2 mM) on chromosomal aberrations in human lymphocyte cultures induced by arsenic (As2O3, 1.4 ?M) and/or fluoride (NaF, 34 ?M). As2O3 and/or NaF generated a significant increase in the incidence of chromosomal aberrations as compared to control levels.
-
In vitro fluoride induced genotoxic effect on human blood lymphocyte cells and its amelioration by emblica officinalis extract
Background Fluoride is a widespread industrial pollutant. Although, acute and chronic exposure of fluoride results in adverse health effects, in vitro studies demands for further evidences to conclude on the role of F as genotoxic agent. We have investigated the genotoxic properties of fluoride on peripheral blood lymphocyte cells and evaluated
-
Effect of static magnetic field on the induction of micronuclei by some mutagens
OBJECTIVES: It is important to assess the risk of static magnetic fields (SMFs) on human health, because epidemiological studies have indicated that SMFs play a role in the development of diseases such as leukemia and brain tumor. In our environment, we have numerous chances to be exposed to not only
-
Mitigating effects of some antidotes on fluoride and arsenic induced free radical toxicity in mice ovary
The effects of oral administration of sodium fluoride (NaF) and/or arsenic trioxide (As(2)O(3)) (5 mg and 0.5 mg/kg body weight, respectively) for 30 days were investigated on free radical induced toxicity in the mouse ovary. The reversibility of the induced effects after withdrawal of NaF+As(2)O(3) treatment and by administration of
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride & Rickets
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid (unmineralized bone) content of bone. When bones have too much osteoid, they become soft and prone to fracture -- a condition known as osteomalacia. When osteomalacia develops during childhood, it is called "rickets." The potential for fluoride
-
Mayo Clinic: Fluoridation & Bone Disease in Renal Patients
The available evidence suggests that some patients wtih long-term renal failure are being affected by drinking water with as little as 2 ppm fluoride. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers and if fluoride is indeed the cause. It would seem prudent, therefore, to monitor the fluoride intake of patients with renal failure living in high fluoride areas.
-
Dental Fluorosis & Enamel Hypoplasia in Children with Kidney Disease
Children with kidney disease are known to have high levels of fluoride in their blood and to be at risk for disfiguring tooth defects. Research suggests that high levels of fluoride in blood, which can cause the tooth defect known as dental fluorosis, can contribute to the defects that occur
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
Related FAN Content :
-