Abstract
Fluoride has been widely used in dentistry because it is a specific and effective caries prophylactic agent. However, excess fluoride may represent a hazard to human health, especially by causing injury to genetic material. Genotoxicity tests represent an important part of cancer research to assess the risk of potential carcinogens. In the current study, the potential DNA damage associated with exposure to fluoride was assessed by the single cell gel (comet) assay in vitro. Chinese hamster ovary cells were exposed to sodium fluoride (NaF) at final concentration ranging from 7 to 100 micro/ml for 3 h, at 37 dgrees C. The results pointed out that NaF in all concentrations tested did not contribute to DNA damage as depicted by the mean tail moment and tail intensity. These findings are clinically important since they represent an important contribution to a correct evaluation of the potential health risk associated with the exposure to dental agents.
-
-
Mutual interactions among ingredients of betel quid in inducing genotoxicity on Chinese hamster ovary cells
The purpose of this study is to explore the mutual interactions among the chemical ingredients of betel quid including arecoline, sodium fluoride, catechin and glycyrrhizin in producing genotoxicity on Chinese hamster ovary (CHO) cells using the micronucleus method. Our results show that arecoline at a rather low concentration of 0.2-2
-
Genotoxic evaluation of chronic fluoride exposure: micronucleus and sperm morphology studies
The purpose of this study was to investigate the genotoxic effects of chronic fluoride exposure on mammalian cells in vivo by use of the mouse bone-marrow micronucleus test and the sperm morphology methodology. Mice of genotype B6C3F1 were obtained at weaning and maintained on a low-fluoride diet (less than 0.2
-
Health Effects of Ingested Fluoride
Excerpts: INTRODUCTION Fluoridation of drinking water has been a subject of controversy for decades. Over the past 50 years, the incidence of dental caries (cavities) has declined considerably in the United States, an important health advance that most scientists attribute principally to increased access to fluoridated water and dental products. According to
-
The influence of atmospheric hydrogen fluoride on the frequency of sex-linked recessive lethals and sterility in Drosophila Melanogaster
The influence of hydrogen fluoride as an atmospheric contaminant was investigated in the Oregon-r strain of Drosophila melanogaster. Two principal parameters of mutagenicity were used: sex-linked recessive lethals and sterility. The flies were subjected to various levels of HF in fumigation chambers. Sex-linked recessive lethal mutation frequency increasd at each level
-
Ameliorative effects of N-acetylcysteine on fluoride-induced oxidative stress and DNA damage in male rats' testis
This study was to elucidate DNA damage in rats treated with sodium fluoride (NaF) by performing 8-Hydroxy-2-deoxyguanosine (8-OHdG) immunohistochemical staining assays on seminiferous tubules of rats' testis, and also to evaluate the protective effects of N-acetylcysteine (NAC) on spermatogenesis. Male Sprague Dawley (SD) rats were exposed to a single dose
Related Studies :
-
-
-
Fluoride's Mutagenicity: In vitro Studies
According to the National Toxicology Program, "the preponderance of evidence" from laboratory "in vitro" studies indicate that fluoride is a mutagenic compound. Many substances which are mutagens, are also carcinogens (i.e. they can cause cancer). As is typical for in vitro studies, the concentrations of fluoride that have generally been tested
-
Fluoride's Mutagenicity: In vivo Studies
Consistent with dozens of in vitro studies, a number of in vivo studies, in both humans and animals, have found evidence of fluoride-induced genetic damage. In particular, research on humans exposed to high levels of fluoride have found increased levels of "sister chromatid exchange" (SCE). As noted in one study: "In
-
Micronucleus and Sister Chromatid Exchange Frequency in Endemic Fluorosis
The rise of sister chromatid exchange (SCE) and micronucleus (MN) in the peripheral blood lymphocytes of the fluorine-intoxicated patients indicates that fluorine is a mutagenic agent which can cause DNA and chromosomal damage.
-
Fluoride's Effect on the Male Reproductive System -- In Vitro Studies
Carefully controlled in vitro studies have found that direct exposure of fluoride to the testes or semen inhibits testosterone production and damages sperm. While researchers have known since the 1930s that mega concentrations of fluoride can completely (but reversibly) immobilize sperm, it was not until the 1970s and 1980s that researchers found that relatively modest concentrations of fluoride could cause damage prior to complete immobilization.
-
Fluoride's Effect on Male Reproductive System: Animal Studies
Over 60 studies on animals (including rats, mice, roosters, and rabbits) have found that fluoride adversely impacts the male reproductive system. These studies have repeatedly found the following effects: (1) decreases in testosterone levels; (2) reduced sperm motility; (3) altered sperm morphology; (4) reduced sperm quantity; (5) increased oxidative stress; (6) and reduced capacity to breed.
Related FAN Content :
-