Abstract
Radish (Raphunus sativa), coriander (Coriandrum sativum), mustard (Brassica juncea), and spinach (Spinacea oleracea) plants were grown in earthen pots watered with aqueous solutions containing 0, 5, and 10 mg F/L. Fluoride (F) uptake and superoxide dismutase (SOD) activity (unit/mg protein/min) were estimated from the edible plant parts following harvest after 60 days. The values of
both entities rose with increasing F exposure in the order radish > coriander > spinach > mustard. The results indicate that plant species tolerant to F toxicity induce higher antioxidant SOD activity, which may be an adaptive reaction in plant cells to attenuate the damaging effect of reactive oxygen species (ROS) generated during F stress.
-
-
Cyperus esculentus suppresses hepato-renal oxidative stress, inflammation, and caspase-3 activation following chronic exposure to sodium fluoride in rats’ model.
Background Death arising from hepato-renal related diseases is on the increase. Cyperus esculentus (CE) possesses antioxidants potentials. This study aim at investigating the effect of Cyperus esculentus on sodium fluoride (NaF)-induced hepato-renal toxicity in rats. Methods Twenty-four male rats weighting (10–12 weeks old, 200± 20 g) randomized into group A (control) received 1 ml normal
-
Ameliorative effects of N-acetylcysteine on fluoride-induced oxidative stress and DNA damage in male rats' testis
This study was to elucidate DNA damage in rats treated with sodium fluoride (NaF) by performing 8-Hydroxy-2-deoxyguanosine (8-OHdG) immunohistochemical staining assays on seminiferous tubules of rats' testis, and also to evaluate the protective effects of N-acetylcysteine (NAC) on spermatogenesis. Male Sprague Dawley (SD) rats were exposed to a single dose
-
Effect of Fluoride on the Expression of 8-Hydroxy-2'-Deoxyguanosine in the Blood, Kidney, Liver, and Brain of Rats.
Excessive exposure of fluoride not only leads to damage on bone, but also has an adverse effect on soft tissues. Oxidative DNA damage induced by fluoride is thought to be one of the toxic mechanisms of fluoride effect. However, the dose–response of fluoride on oxidative DNA damage is barely studied
-
Protective effects of allium sativum extract against sodium fluoride induced neurotoxicity.
Fluoride becomes toxic at higher doses which leads to Fluorosis. In addition to dental and skeletal fluorosis, it also affects soft tissues including liver, heart, kidney, muscle, brain, etc. The aim of this study to examine the fluoride-induced oxidative stress and the protective role of Allium sativum ethanolic extract (ASEE)
-
Co-exposure to non-toxic levels of cadmium and fluoride induces hepatotoxicity in rats via triggering mitochondrial oxidative damage, apoptosis, and NF-kB pathways.
Fluoride (F) and cadmium (Cd) are two common water pollutants. There is low information about their co-exposure in low doses. So, in this study, we evaluated the combination effects of non-toxic doses of F and Cd and the possible mechanism of their combined interaction. Male rats were exposed to non-toxic
Related Studies :
-
-
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
Related FAN Content :
-