Abstract
For decades, mouse and other rodents have been used for study of oxidative or related studies such as the effect of fluoride. It is known that rodents normally synthesize their own vitamin C (VC) due to the presence of a key enzyme in ascorbic acid synthesis, lgulonolactone-?-oxidase (Gulo), while humans do not have the capacity of VC synthesis due to the deletion of most part of the GULO gene. The spontaneous fracture (sfx) mouse recently emerged as a model for study of VC deficiency. We investigated the effect of fluoride on liver cells from wild type Balb/c and sfx mice. We found that reduction of SOD, GPx and CAT activities were reduced in both wild type and sfx mice; however, the amount of reduction in the sfx cells is more than that in Balb/c cells. In addition, while both cells increased MDA, the increase in the sfx cells is greater than that in Balb/c cells. Gene networks of Sod, Gpx and Cat in the liver of humans and mice are also different. Our study suggests that reaction to fluoride in Vitamin C deficient mice might be different from that of wild type mice.
-
-
Tamarind seed coat extract restores fluoride-induced hematological and biochemical alterations in rats.
Fluoride (F-) is becoming an ineluctable environmental pollutant causing deleterious effects in humans. In the present study, we examined whether tamarind seed coat extract (TSCE) is beneficial against the F--induced systemic toxicity and hematological changes. Wistar rats were randomly grouped as follows: group I served as control; group II intoxicated
-
Protective role of gallic acid on sodium fluoride induced oxidative stress in rat brain
Gallic acid is known as a potent antioxidant active compound of the edible and medicinal plant Peltiphyllum peltatum. The main objective of this study was to evaluate the neuroprotective effects of gallic acid against sodium fluoride induced oxidative stress in rat brain. Gallic acid (10 and 20 mg/kg) and vitamin C
-
Mitigating effects of some antidotes on fluoride and arsenic induced free radical toxicity in mice ovary
The effects of oral administration of sodium fluoride (NaF) and/or arsenic trioxide (As(2)O(3)) (5 mg and 0.5 mg/kg body weight, respectively) for 30 days were investigated on free radical induced toxicity in the mouse ovary. The reversibility of the induced effects after withdrawal of NaF+As(2)O(3) treatment and by administration of
-
Neuroprotective effect of ascorbic acid and ginkgo biloba against fluoride caused neurotoxicity
Excessive consumption of fluoride through drinking water or other sources lead to skeletal and dental fluorosis. According to the world health organization 23 nations are facing the problem of fluorosis. In the recent past researchers describe the non-skeletal fluorosis where soft tissues and major organs are the victims of fluoride
-
[The primary study of antagonism of selenium on fluoride-induced reproductive toxicity of male rat].
The protective effect of ascorbic acid at dose level of 1.0 mg/L in drinking water against the fluoride-induced damage on reproductive system of rat was studied. 150 mg/L sodium fluoride (NaF) in drinking water of male rat can cause the significant decrease of sperm count and mobility, the increase of
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism Excessive exposure to fluoride causes a defect of the tooth enamel known as dental fluorosis. In
-
Dental Fluorosis & Enamel Hypoplasia in Children with Kidney Disease
Children with kidney disease are known to have high levels of fluoride in their blood and to be at risk for disfiguring tooth defects. Research suggests that high levels of fluoride in blood, which can cause the tooth defect known as dental fluorosis, can contribute to the defects that occur
-
Fluoride Exposure Aggravates the Impact of Iodine Deficiency
A consistent body of animal and human research shows that fluoride exposure worsens the impact of an iodine deficiency. Iodine is the basic building block of the T3 and T4 hormones and thus an adequate iodine intake is essential for the proper functioning of the thyroid gland. When iodine intake is inadequate during infancy and
Related FAN Content :
-