Abstract
The aim of the study has been to determine the influence upon the kidney, liver, and the blood prooxidative system, exercised by administration of methionine (Met), under conditions of oxidative stress induced by sodium fluoride (NaF).The experiment was carried out on Wistar FL rats (adult females) that, for 35 days, were administered distilled water, NaF or NaF with methionine (doses: 10 mg NaF/kg bw/day, 10 mg Met/kg bw/day). The influence of administered NaF and Met was examined by analyzing the concentration of malondialdehyde (MDA) in kidney, liver, erythrocytes, and blood plasma.The study confirmed the disadvantageous effect of NaF upon the antioxidative system in rats (an increase in the concentration of MDA).The administration of methionine reduced the process of lipid peroxidation (a decreased in the concentration of MDA). The best antioxidative properties have been demonstrated by methionine in rat liver.
-
-
Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat
BACKGROUND: Sodium fluoride (NaF) intoxication is associated with oxidative stress and altered antioxidant defense mechanism. The present study was carried out to evaluate the potential protective role of blackberry and quercetin (Q) against NaF-induced oxidative stress and histological changes in liver, kidney, testis and brain tissues of rats. METHODS: The rats
-
Ameliorative effect of tamarind leaf on fluoride-induced metabolic alterations
OBJECTIVES: Fluoride is a serious health hazard across several nations, and chronic intake of fluoride deranges the carbohydrate, lipid and antioxidant metabolism in general. As there are limited remedial measures to prevent fluorosis, we investigated the role of tamarind leaf as a food supplement in restoration of carbohydrate, lipid and
-
Cytoprotective effects of curcumin on sodium fluoride-induced intoxication in rat erythrocytes
Curcumin is well known for its potent antioxidant activity. The result of numerous studies showed that antioxidants can protect against fluoride-induced toxicity. In the present study, protective effects of curcumin against sodium fluoride-induced toxicity in rat erythrocytes were evaluated. Curcumin (10 and 20 mg/kg) and vitamin C (10 mg/kg) were
-
Toxic effects of fluoride and chlorpyrifos on antioxidant parameters in rats: protective effects of vitamins C and E
In continuing our studies on the effects of fluoride (F) on the toxicity of pesticides, we investigated the interaction of 1 ppm and 10 ppm F in the drinking water of rats orally administered 1 and 10 mg chlorpyriphos/kg bw/day, alone and in combination for 28 days. Changes in antioxidant
-
Lipid peroxidation in fluorosis and the protective role of dietary factors
The influence of chronic Fl intoxication on lipid peroxidation and the state of the antioxidant system was studied in rats on different diets. Chronic Fl intoxication inhibited antioxidant activity and caused an increase in the rate of peroxidation and the level of lipoperoxides in liver, brain and serum. Diets with
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoride & Rickets
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid (unmineralized bone) content of bone. When bones have too much osteoid, they become soft and prone to fracture -- a condition known as osteomalacia. When osteomalacia develops during childhood, it is called "rickets." The potential for fluoride
-
Fluoride Exposure Increases Metabolic Requirement for Magnesium
Fluoride's toxicity is significantly enhanced in the presence of nutritional deficiencies. Similarly, fluoride exposure increases the body's requirement for certain nutrients. An individual with a high intake of fluoride, for example, will need a proportional increase in calcium to avoid the mineralization defects (e.g., osteomalacia) that fluoride causes to bone
-
Fluoride Exposure Increases Metabolic Requirement for Calcium & Vitamin D
It is well known that individuals with nutrient deficiencies are more susceptible to fluoride toxicity, including fluoride's bone effects. As discussed in the following studies, fluoride increases the skeleton's need for calcium (and vitamin D) by increasing the amount of unmineralized tissue (osteoid) in the bone. When insufficient calcium and
Related FAN Content :
-