Fluoride Action Network


Effects of common anaesthetics such as ether, methoxyflurane, isoflurane, carbon dioxide (at 100%, 80% or 60% admixed with O(2)) on toxicity and clinical pathology parameters in rats were investigated. Ether, methoxyflurane and 100% CO(2) induced toxicity in some animals. Erythrocyte, haemoglobin and haematocrit were reduced in females by 100% CO(2), methoxyflurane and isoflurane. Glucose was increased by 60% CO(2), 80% CO(2), ether, isoflurane and methoxyflurane in males. Chloride was reduced by isoflurane and all CO(2) concentrations in females. Serum proteins were reduced by isoflurane and methoxyflurane. Sodium, inorganic phosphate, calcium and magnesium were reduced by methoxyflurane and isoflurane, but increased by all CO(2) concentrations. Potassium was reduced by ether, methoxyflurane or isoflurane. Triiodothyronine and thyroxine were reduced by all anaesthetics. Prolactin was reduced by methoxyflurane, but raised by ether and isoflurane. Erythrocyte cholinesterase (E-ChE) activity is markedly reduced (20-40%) after anaesthesia with all CO(2) concentrations in both sexes. E-ChE was unaffected by ether, methoxyflurane, or isoflurane. Serum and brain cholinesterase activities were not affected. E-ChE inhibition correlated with decreased blood pH, suggesting that this was caused by acidosis. This is of practical relevance in the risk assessment of cholinesterase inhibitors. Conclusions: Clinical pathology data were affected by all anaesthetics. CO(2)/O(2) (80%/20%) and isoflurane are the most suitable anaesthetics. If E-ChE activity is to be determined, isoflurane is the anaesthetic of choice.