Abstract
Effects of sodium fluoride (NaF) on washed, ejaculated human spermatozoa at doses of 25, 50, and 250 mM were investigated in vitro at intervals of 5, 10, and 20 min. Sodium fluoride (NaF) did not affect the extracellular pH of sperm, except that a slight acidification was caused by the 250 mM dose only. The treatment caused a significant enhancement in acid phosphatase (ACPase) and hyaluronidase activities after 5 and 10 min. However, the decrease in the lysosomal enzyme activity after 20 min treatment could have been due to the gradual increase in fluoride accumulation by spermatozoa leading to membrane damage. Silver nitrate staining of sperm revealed elongated heads, deflagellation, and loss of the acrosome together with coiling of the tail. Sperm glutathione levels also showed a time-dependent decrease with complete depletion after 20 min indicating rapid glutathione oxidation in detoxification of the NaF. The altered lysosomal enzyme activity and glutathione levels together with morphologic anomalies resulted in a significant decline in sperm motility with an effective dose of 250 mM.
-
-
Effects of sodium fluoride and sulfur dioxide on oxidative stress and antioxidant defenses in rat testes
To assess effects of sodium fluoride and sulfur dioxide on oxidative stress and antioxidant defenses in the testes, 96 sexually mature male Wistar rats were divided randomly into four groups of twenty-four rats each. One group of rats was left untreated as controls, and the other three groups were administered,
-
Toxic effects of fluoride on reproductive ability in male rats: sperm motility, oxidative stress, cell cycle, and testicular apoptosis.
To investigate the effects of sodium fluoride (NaF) on sperm motility, oxidative stress, and apoptosis in the testes, male Wistar rats were exposed to 1.0, 2.0, and 3.0 mg NaF/kg bw/day by intragastric gavage for 90 days. Sperm motility was significantly inhibited, especially at the lower F intake level. Significant
-
[The protective effects of a-lipoic acid on fluoride-induced reproductive lesion in rats via oxidative stress-mediated endoplasmic reticulum stress]
Objective: To determine the oxidative stress and endoplasmic reticulum stress and their changes after a-lipoic acid (a-LA) intervention, and to explore the effect and mechanism of fluoride-induced reproductive lesion. Methods: A total of 40 male Sprague-Dawley (SD) rats were randomly divided into four groups, control group(0.9% sodium chloride), a-LA group(100 mg/kg
-
Toxic effects of sodium fluoride on reproductive function in male mice
To investigate the effects and possible mechanisms of the action of fluoride on testis cell cycle and cell apoptosis in male mice, sexually mature male Kunming mice were exposed to 50, 100, 200, and 300 mg NaF/L in their drinking water for 8 weeks. At the end of the exposure
-
Effect of long-term fluoride exposure on lipid peroxidation and histology of testes in first- and second-generation rats
This experiment was designed to investigate the histological and lipid peroxidation effects of chronic fluorosis on testes tissues of first- and second-generation rats. Sixteen virgin female Wistar rats were mated with eight males (2:1) for approximately 12 h to obtain first-generation rats. Pregnant rats were divided into two groups: controls
Related Studies :
-
-
-
Fluoride's Effect on Male Reproductive System - Human Studies
Consistent with in vitro and animal research, studies of human populations have reported associations between fluoride exposure and damage to the male reproductive system. Most notably, a scientist at the Food & Drug Administration reported in 1994 that populations in the United States with more than 3 ppm fluoride in their water had lower "total fertility rates" than populations with lower fluoride levels.
-
Fluoride's Effect on Male Reproductive System -- The "Sprando/Collins" Anomaly
In contrast to the findings of over 60 animal studies from other research teams, a series of studies by FDA researchers Sprando & Collins reported virtually no evidence of reproductive toxicity among animals treated with very high levels of fluoride exposure. The reasons for this discrepancy remains unclear. Excerpts from Sprando/Collins' Studies: "This study
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoride's Effect on Male Reproductive System: Animal Studies
Over 60 studies on animals (including rats, mice, roosters, and rabbits) have found that fluoride adversely impacts the male reproductive system. These studies have repeatedly found the following effects: (1) decreases in testosterone levels; (2) reduced sperm motility; (3) altered sperm morphology; (4) reduced sperm quantity; (5) increased oxidative stress; (6) and reduced capacity to breed.
Related FAN Content :
-