Abstract
Female mice were fed a low fluoride diet (0.1 to 0.3 ppm fluoride) plus drinking water containing 0, 50, 100 or 200 ppm fluoride as sodium fluoride. Toxic effects of fluoride were evidenced by retarded growth and impaired reproduction in mice with intakes of 100 and 200 ppm fluoride, and the higher level resulted in a high mortality rate (50% deaths in 5 weeks). Mice with a low fluoride intake developed signs of fluorine deficiency, with a progressive development of infertility in two successive generations. Growth rate and litter size were not affected by the low fluoride intake, but the percentage of mice producing litters was lower, and the age at delivery of the first litter was greater than in mice receiving 50 ppm fluoride.
-
-
Testing the potential of sodium fluoride to affect spermatogenesis in the rat
The potential of sodium fluoride (NaF) to affect spermatogenesis and endocrine function was assessed in P and F1 generation male rats. Male and female experimental rats received sodium fluoride in their drinking water at one of four concentrations (25, 100, 175, 250 ppm). P generation male and female rats were
-
Fluoride impairs oocyte maturation and subsequent embryonic development in mice
The damage caused by fluorosis is permanent, and has been recognized as a public health problem in a number of regions of the world. Although multiple studies provided evidence that sodium fluoride (NaF) elicits adverse effects on reproductive function, the effect of fluoride on female germ cell development is not
-
Natrium fluoride influences methylation modifications and induces apoptosis in mouse early embryos
Fluoride is considered a major pollutant of ground water and can cause cytotoxicity in a concentration-dependent manner. This study epigenetically examined the effect of fluoride on early embryos of Kunming mice administered with 0, 20, 60, and 120 mg/L sodium fluoride (NaF) for 30 days. The results showed that NaF
-
[Fluorosis of coal burning affects the male reproductive system].
Fluorosis of coal burning is a new type of endemic fluorosis in China, which affects the male reproductive system. Furthermore, the content of fluoride in the semen, sperm mortality, sperm concentration and the incidence of infertility are higher in severe fluorosis areas than in mild- and non-fluorosis areas, so are
-
In silico prediction of microRNAs on fluoride induced sperm toxicity in mice
Fluorosis is an endemic global problem causing male reproductive impairment. F mediates male reproductive toxicity in mice down-regulating 63 genes involved in diverse biological processes - apoptosis, cell cycle, cell signaling, chemotaxis, electron transport, glycolysis, oxidative stress, sperm capacitation and spermatogenesis. We predicted the miRNAs down-regulating these 63 genes using
Related Studies :
-
-
-
Fluoride's Effect on the Male Reproductive System -- In Vitro Studies
Carefully controlled in vitro studies have found that direct exposure of fluoride to the testes or semen inhibits testosterone production and damages sperm. While researchers have known since the 1930s that mega concentrations of fluoride can completely (but reversibly) immobilize sperm, it was not until the 1970s and 1980s that researchers found that relatively modest concentrations of fluoride could cause damage prior to complete immobilization.
-
Fluoride's Effect on Male Reproductive System -- The "Sprando/Collins" Anomaly
In contrast to the findings of over 60 animal studies from other research teams, a series of studies by FDA researchers Sprando & Collins reported virtually no evidence of reproductive toxicity among animals treated with very high levels of fluoride exposure. The reasons for this discrepancy remains unclear. Excerpts from Sprando/Collins' Studies: "This study
-
Fluoride's Effect on Male Reproductive System: Animal Studies
Over 60 studies on animals (including rats, mice, roosters, and rabbits) have found that fluoride adversely impacts the male reproductive system. These studies have repeatedly found the following effects: (1) decreases in testosterone levels; (2) reduced sperm motility; (3) altered sperm morphology; (4) reduced sperm quantity; (5) increased oxidative stress; (6) and reduced capacity to breed.
-
Fluoride's Effect on Male Reproductive System - Human Studies
Consistent with in vitro and animal research, studies of human populations have reported associations between fluoride exposure and damage to the male reproductive system. Most notably, a scientist at the Food & Drug Administration reported in 1994 that populations in the United States with more than 3 ppm fluoride in their water had lower "total fertility rates" than populations with lower fluoride levels.
Related FAN Content :
-