Abstract
High fluoride content is known to cause dental and skeletal abnormalities. In addition, present review indicates that sodium fluoride consumption caused increased number of resorptions and dead foetuses. Various skeletal anomalies such as wavy ribs, presence of 14th ribs, lacking 6th sternebrae and incomplete ossification of skull occur. All these changes could be due to oxidative stress caused by fluoride consumption. Fluoride-induced changes could be successfully ameliorated by cotreatment with vitamins and calcium.
-
-
[Experimental studies of pathogenesis of chronic fluoride intoxication].
The article presents the results of studies of occupational fluorosis pathogenesis on experimental model of chronic fluoride intoxication (CFI). In early fluoride intoxication, fluoride and calcium in the body are in compensatory relations. Later, they are disturbed. High reaction ability of fluoride in CFI is associated with hypocalciemia which triggers
-
Reversal of fluoride induced cell injury through elimination of fluoride and consumption of diet rich in essential nutrients and antioxidants
The objective of the present communication is to address the issues concerning reversal of fluoride induced cell injury and disease (i.e. fluorosis) through the elimination of fluoride and consumption of a diet containing essential nutrients and antioxidants. Humans afflicted with fluorosis, as a result of consuming fluoride contaminated water or
-
Lipid peroxidation and antioxidant enzyme status of adult males with skeletal fluorosis in Andhra Pradesh, India.
Blood samples from 24 adult males, age 25 to 40, with endemic skeletal fluorosis, living in the Vaillapally village of the Nalgonda district, Andhra Pradesh, India, were examined and compared with samples from 15 matched controls for their antioxidant enzyme activity and lipid peroxidation. Elevated malondialdehyde (MDA) levels indicated an
-
Mitigating role of quercetin against sodium fluoride-induced oxidative stress in the rat brain
CONTEXT: Quercetin is a well known aglycone flavonoid that is widely found in different food sources. OBJECTIVE: In this study, the in vivo neuroprotective potential of quercetin against sodium fluoride-induced oxidative stress was evaluated. MATERIALS AND METHODS: Wistar rats were divided into five treatment groups and then subjected to daily
-
Fluorosilicic acid induces DNA damage and oxidative stress in bone marrow mesenchymal stem cells.
Highlights Fluorosilicic acid is the most used additive for water fluoridation. Dental fluorosis can be caused by fluorosilicic acid present in drinking water. DNA damage was caused by fluorosilicic acid in mesenchymal stem cells. Fluorosilicic acid altered bone mineralization in mesenchymal stem cells. DNA damage caused by fluorosilicic acid
Related Studies :
-
-
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
Related FAN Content :
-