Abstract
High fluoride content is known to cause dental and skeletal abnormalities. In addition, present review indicates that sodium fluoride consumption caused increased number of resorptions and dead foetuses. Various skeletal anomalies such as wavy ribs, presence of 14th ribs, lacking 6th sternebrae and incomplete ossification of skull occur. All these changes could be due to oxidative stress caused by fluoride consumption. Fluoride-induced changes could be successfully ameliorated by cotreatment with vitamins and calcium.
-
-
Reversal of fluoride induced cell injury through elimination of fluoride and consumption of diet rich in essential nutrients and antioxidants
The objective of the present communication is to address the issues concerning reversal of fluoride induced cell injury and disease (i.e. fluorosis) through the elimination of fluoride and consumption of a diet containing essential nutrients and antioxidants. Humans afflicted with fluorosis, as a result of consuming fluoride contaminated water or
-
[Experimental studies of pathogenesis of chronic fluoride intoxication].
The article presents the results of studies of occupational fluorosis pathogenesis on experimental model of chronic fluoride intoxication (CFI). In early fluoride intoxication, fluoride and calcium in the body are in compensatory relations. Later, they are disturbed. High reaction ability of fluoride in CFI is associated with hypocalciemia which triggers
-
Ameliorative effects of quercetin on sodium fluoride-induced oxidative stress in rat's kidney
OBJECTIVE: The in vivo nephroprotective effect of quercetin against sodium fluoride (NaF)-induced damage was studied. METHODS: Renal injury was induced by daily administration of NaF (600 ppm) through drinking water for 1 week. The levels of reduced glutathione (GSH), lipid peroxidation as well as superoxide dismutase and catalase activity of
-
Neuroprotective effects of silymarin on sodium fluoride-induced oxidative stress
Silymarin is a well-known potent antioxidant agent. Numerous reports highlighted that antioxidant consumption can mitigate sodium fluoride induced neuronal damage. The present study aimed to examine the ameliorative potential of silymarin on sodium fluoride-induced oxidative stress using the rat brain as model. Silymarin (10 and 20 mg/kg) and vitamin C (10 mg/kg)
-
Neuroprotective activity of Matricaria recutita against fluoride-induced stress in rats.
CONTEXT: Oxidative stress plays a key role in pathophysiology of many neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and so on. Although Matricaria recutita L. (Asteraceae), German chamomile, is traditionally used for central nervous system (CNS)-related diseases, its antistress properties have received little attention. OBJECTIVE: The present study evaluated the
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
Related FAN Content :
-