Abstract
Sixty-gramme rats were given either 0, 75, 100 or 150 parts/10(6) fluoride in their drinking water. After five weeks, the fluoride, the phosphorus and the protein contents of the enamel were compared in control and experimental animals at three stages of enamel development. The mineral content was reduced in pigmented enamel from animals given 75 parts/10(6) or more fluoride in their drinking water. The fluoride content was elevated in all stages of fluorosed enamel development. At the lowest fluoride level (75 parts/10(6], a larger proline content was found in the proteins of the maturing, fluorosed enamel but there was no increase in the protein content. In animals given 100 parts/10(6) fluoride in their drinking water, the proline content of the protein was greater in maturing, fluorosed enamel, and the total protein content of the post-secretory enamel (maturing and pigmented) was greater than in the controls. These observations indicate that, with increasing levels of fluoride in drinking water, there was an initial delay in the loss of the amelogenin proteins followed by a decreased removal of total protein from the enamel. These results indicate that fluoride interfered with the normal post-secretory, pre-eruptive development of enamel.
-
-
Dental fluorosis and a polymorphism in the COL1A2 gene in Mexican children.
Highlights Dental fluorosis is a public health problem in the communities evaluated. The rs 412777 polymorphism in the COL1A2 gene was found in Mexican children. An association between the COL1A2 gene polymorphism and dental fluorosis was found. The genetic variant evaluated represents a risk factor to develop dental fluorosis. OBJECTIVE:
-
The effect of fluoride on the immature enamel matrix protein of the rat.
Fluoride in drinking water decreased the total quantity of enamel matrix protein formed in rat incisors and altered the relative proportions of individual amino acids of the matrix.
-
Enamel fluorosis related to plasma F levels in the rat.
The purpose of this long-term study was to investigate disturbances in enamel mineralization associated with low, but relatively constant, plasma fluoride levels produced by constant infusion or with fluctuating plasma fluoride levels caused by drinking fluoridated water. Weanling rats were raised for 8 weeks on low-fluoride food and water containing
-
Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated Caspase pathways
Fluoride is an environmental toxicant and induces dental fluorosis and oxidative stress. Lycopene (LYC) is an effective antioxidant that is reported to attenuate fluoride toxicity. To determine the effects of LYC on sodium fluoride (NaF) -induced teeth and ameloblasts toxicity, rats were treated with NaF (10 mg/kg) and/or LYC (10 mg/kg) by
-
Fluoride induced endoplasmic reticulum stress and calcium overload in ameloblasts
OBJECTIVE: The aim of the study was to evaluate the involvement of endoplasmic reticulum stress and intracellular calcium overload on the development of dental fluorosis. METHODS: We cultured and exposed rat ameloblast HAT-7 cells to various concentrations of fluoride and measured apoptosis with flow cytometry and intracellular Ca2+ changes using confocal
Related Studies :
-
-
-
Dental Fluorosis Is a "Hypo-mineralization" of Enamel
Teeth with fluorosis have an increase in porosity in the subsurface enamel ("hypomineralization"). The increased porosity of enamel found in fluorosis is a result of a fluoride-induced impairment in the clearance of proteins (amelogenins) from the developing teeth. Despite over 50 years of research, the exact mechanism by which fluoride impairs amelogin
-
Mechanisms by Which Fluoride Causes Dental Fluorosis Remain Unknown
When it comes to how fluoride impacts human health, no tissue in the body has been studied more than the teeth. Yet, despite over 50 years of research, the mechanism by which fluoride causes dental fluorosis (a hypo-mineralization of the enamel that results in significant staining of the teeth) is not
-
Community Fluorosis Index (CFI)
The current Community Fluorosis Index for U.S. adolescents as a whole (from both fluoridated and non-fluoridated areas) is roughly 5 times higher than the CFI health authorities predicted for fluoridated areas when fluoridation first began. It is also higher than the CFI that the NIDR found in fluoridated areas back in the 1980s. It is readily apparent, therefore, that children are ingesting far more fluoride than was the case in the 1950s, and even as recently as the 1980s.
-
Dental Fluorosis: The "Cosmetic" Factor
Any condition that can cause children to be embarrassed about their physical appearance can have significant consequences on their self-esteem and confidence. Researchers have repeatedly found that "physical appearance [is] the best predictor of self-esteem" in adolescents, (Harter 2000) and that facial attractiveness, particularly the appearance of one's teeth, is a
-
Diagnostic Criteria for Dental Fluorosis: The Thylstrup-Fejerskov (TF) Index
The traditional criteria (the "Dean Index") for diagnosing dental fluorosis was developed in the first half of the 20th century by H. Trendley Dean. While the Dean Index is still widely used in surveys of fluorosis -- including the CDC's national surveys of fluorosis in the United States -- dental
Related FAN Content :
-