Abstract
Sixty-gramme rats were given either 0, 75, 100 or 150 parts/10(6) fluoride in their drinking water. After five weeks, the fluoride, the phosphorus and the protein contents of the enamel were compared in control and experimental animals at three stages of enamel development. The mineral content was reduced in pigmented enamel from animals given 75 parts/10(6) or more fluoride in their drinking water. The fluoride content was elevated in all stages of fluorosed enamel development. At the lowest fluoride level (75 parts/10(6], a larger proline content was found in the proteins of the maturing, fluorosed enamel but there was no increase in the protein content. In animals given 100 parts/10(6) fluoride in their drinking water, the proline content of the protein was greater in maturing, fluorosed enamel, and the total protein content of the post-secretory enamel (maturing and pigmented) was greater than in the controls. These observations indicate that, with increasing levels of fluoride in drinking water, there was an initial delay in the loss of the amelogenin proteins followed by a decreased removal of total protein from the enamel. These results indicate that fluoride interfered with the normal post-secretory, pre-eruptive development of enamel.
-
-
Enamel crystals of mice susceptible or resistant to dental fluorosis: an AFM study
Objective: This study aimed to assess the overall apatite crystals profile in the enamel matrix of mice susceptible (A/J strain) or resistant (129P3/J strain) to dental fluorosis through analyses by atomic force microscopy (AFM). Material and Methods: Samples from the enamel matrix in the early stages of secretion and maturation were obtained
-
Excessive fluoride induces endoplasmic reticulum stress and interferes enamel proteinases secretion
Protein retention in the enamel layer during tooth formation is well known to be associated with dental fluorosis but the underlying mechanism is unclear. The functions of the endoplasmic reticulum (ER) correlate directly with secreted protein metabolism. We used an ameloblast-derived cell line to determine whether excessive amounts of fluoride
-
JNK Signaling Pathway Mediates Fluoride-Induced Upregulation of CK1a during Enamel Formation.
Fluorosis is a defect in the enamel mineral content caused by excessive fluoride intake during amelogenesis; the interaction of various factors in the development and progression of fluorosis has not been defined. Casein kinase 1a (CK1a) is constitutively active in cells and is involved in diverse cellular processes; however, its
-
Possible Association Between Polymorphisms in ESR1, COL1A2, BGLAP, SPARC, VDR, and MMP2 Genes and Dental Fluorosis in a Population from an Endemic Region of West Bengal.
Dental fluorosis (DF) is the most prevalent form of fluorosis in India affecting millions of people all over the country. As estrogen receptor 1 (ESR1), collagen type 1 alpha 2 (COL1A2), bone ?-carboxyglutamic acid protein (BGLAP), secreted protein acidic and cysteine-rich (SPARC), vitamin D receptor (VDR), and matrix metallopeptidase 2
-
Excessive fluoride reduces Foxo1 expression in dental epithelial cells of the rat incisor
Enamel fluorosis is characterized by hypomineralization, and forkhead box O1 (Foxo1) is essential for mouse enamel biomineralization. This study investigated the effect of fluoride on Foxo1 expression and its implications for enamel fluorosis. Mandibular incisors were extracted from Sprague Dawley rats treated for 3 months with water containing 0, 50, or
Related Studies :
-
-
-
Mechanisms by Which Fluoride Causes Dental Fluorosis Remain Unknown
When it comes to how fluoride impacts human health, no tissue in the body has been studied more than the teeth. Yet, despite over 50 years of research, the mechanism by which fluoride causes dental fluorosis (a hypo-mineralization of the enamel that results in significant staining of the teeth) is not
-
Dental Fluorosis Is a "Hypo-mineralization" of Enamel
Teeth with fluorosis have an increase in porosity in the subsurface enamel ("hypomineralization"). The increased porosity of enamel found in fluorosis is a result of a fluoride-induced impairment in the clearance of proteins (amelogenins) from the developing teeth. Despite over 50 years of research, the exact mechanism by which fluoride impairs amelogin
-
Dental Fluorosis Impacts Dentin in Addition to Enamel
Dental fluorosis is a mineralization defect of tooth enamel marked by increased subsurface porosity. The enamel, however, is not the only component of teeth that is effected. As several studies have demonstrated, dental fluorosis can also impair the mineralization of dentin as well. As noted in one review: "The fact that
-
Diagnostic Criteria for Dental Fluorosis: The Thylstrup-Fejerskov (TF) Index
The traditional criteria (the "Dean Index") for diagnosing dental fluorosis was developed in the first half of the 20th century by H. Trendley Dean. While the Dean Index is still widely used in surveys of fluorosis -- including the CDC's national surveys of fluorosis in the United States -- dental
-
Diagnostic Criteria for Dental Fluorosis: The TSIF ("Total Surface Index of Fluorosis")
The traditional criteria (the "Dean Index") for diagnosing dental fluorosis was developed in the first half of the 20th century by H. Trendley Dean. While the Dean Index is still widely used in surveys of fluorosis -- including the CDC's national surveys of fluorosis in the United States -- dental
Related FAN Content :
-