Abstract
The maturation stage of enamel development is characterized by a cyclic modulation of the ameloblasts between bands of smooth-ended cells and longer bands of ruffle-ended cells. There are cyclic patterns of calcein staining of and 45Ca uptake in the enamel associated with this cellular modulation. Rats were given 0, 75, 100, or 150 ppm fluoride in their drinking water. Fluoride disrupted the cyclic patterns of the maturation stage, resulting in fewer bands of smooth-ended ameloblasts, fewer calcein-stained stripes, and fewer cycles of 45Ca uptake. When animals were given water containing 0 ppm fluoride following ingestion of water containing 100 ppm fluoride, the pattern of calcein staining returned to that of the control enamel. The disruption of the cyclic patterns in the maturation stage and the increased protein content of maturation enamel seem to be among the early events in the development of fluorosis.
-
-
Short exposure to high levels of fluoride induces stage-dependent structural changes in ameloblasts and enamel mineralization.
We tested the hypothesis that the sensitivity of forming dental enamel to fluoride (F-) is ameloblast developmental stage-dependent and that enamel mineralization disturbances at the surface of fluorotic enamel are caused by damage to late-secretory- and transitional-stage ameloblasts. Four-day-old hamsters received a single intraperitoneal dose of 2.5-20 mg NaF/kg body
-
LS8 cell apoptosis induced by NaF through p-ERK and p-JNK - a mechanism study of dental fluorosis
OBJECTIVE: To investigate the possible biological mechanism of dental fluorosis at a molecular level. MATERIAL AND METHODS: Cultured LS8 were incubated with serum-free medium containing selected concentrations of NaF (0???2?mM) for either 24 or 48?h. Subcellular microanatomy was characterized using TEM; meanwhile, selected biomolecules were analysed using various biochemistry techniques. Transient
-
JNK Signaling Pathway Mediates Fluoride-Induced Upregulation of CK1a during Enamel Formation.
Fluorosis is a defect in the enamel mineral content caused by excessive fluoride intake during amelogenesis; the interaction of various factors in the development and progression of fluorosis has not been defined. Casein kinase 1a (CK1a) is constitutively active in cells and is involved in diverse cellular processes; however, its
-
Dental fluorosis: chemistry and biology.
This review aims at discussing the pathogenesis of enamel fluorosis in relation to a putative linkage among ameloblastic activities, secreted enamel matrix proteins and multiple proteases, growing enamel crystals, and fluid composition, including calcium and fluoride ions. Fluoride is the most important caries-preventive agent in dentistry. In the last two
-
Uncoupling protein-2 is an antioxidant that is up-regulated in the enamel organ of fluoride-treated rats
Dental fluorosis is characterized by subsurface hypomineralization and retention of enamel matrix proteins. Fluoride (F-) exposure generates reactive oxygen species (ROS) that can cause endoplasmic reticulum (ER)-stress. We therefore screened oxidative stress arrays to identify genes regulated by F- exposure. Vitamin E is an antioxidant so we asked if a
Related Studies :
-
-
-
Mechanisms by Which Fluoride Causes Dental Fluorosis Remain Unknown
When it comes to how fluoride impacts human health, no tissue in the body has been studied more than the teeth. Yet, despite over 50 years of research, the mechanism by which fluoride causes dental fluorosis (a hypo-mineralization of the enamel that results in significant staining of the teeth) is not
-
Dental Fluorosis Is a "Hypo-mineralization" of Enamel
Teeth with fluorosis have an increase in porosity in the subsurface enamel ("hypomineralization"). The increased porosity of enamel found in fluorosis is a result of a fluoride-induced impairment in the clearance of proteins (amelogenins) from the developing teeth. Despite over 50 years of research, the exact mechanism by which fluoride impairs amelogin
-
Community Fluorosis Index (CFI)
The current Community Fluorosis Index for U.S. adolescents as a whole (from both fluoridated and non-fluoridated areas) is roughly 5 times higher than the CFI health authorities predicted for fluoridated areas when fluoridation first began. It is also higher than the CFI that the NIDR found in fluoridated areas back in the 1980s. It is readily apparent, therefore, that children are ingesting far more fluoride than was the case in the 1950s, and even as recently as the 1980s.
-
Severe Dental Fluorosis: Perception and Psychological Impact
[caption id="attachment_8879" align="aligncenter" width="550"] Severe fluorosis - Photograph by David Kennedy, DDS[/caption] In its severe forms, dental fluorosis causes highly disfiguring brown and black staining of the teeth, which can cause chronic embarrassment and social anxiety for the impacted child. In 1984, a panel from the National Institute of Mental Health (NIMH) warned
-
"Mild" Dental Fluorosis: Perceptions & Psychological Impact
The vast majority of research has found that patients, parents, and the general public alike view mild fluorosis (TF score 3) as a significant blemish of the teeth, one that is likely to embarrass the affected child to a degree that cosmetic treatment would be warranted.
Related FAN Content :
-