Abstract
In enamel fluorosis model rats treated with sodium fluoride, secretory ameloblasts of incisor tooth germs exhibited disruption of intracellular trafficking. We examined whether heterotrimeric G proteins participated in the disruption of vesicular trafficking of the secretory ameloblast exposed to fluoride, using immunoblotting and pertussis toxin (IAP)-induced adenosyl diphosphate (ADP)-ribosylation for membrane fractions of the cell. Immunoblotting of crude membranes, post supernatants of the ameloblast, with anti-G(alpha i3/alpha o) and anti-G(alpha s) antibodies showed that Gi3 or Go proteins existed in the secretory ameloblast, but Gs protein did not. Immunoblotting of the subcellular membrane fractions indicated that the Gi3 or Go proteins were located in the Golgi membrane, but were not in the rough endoplasmic reticulum (rER) membrane. Autoradiograph of IAP-induced ADP-ribosylation, however, showed the existence of IAP-sensitive G proteins both in rER and Golgi membranes. Fluoride treatment decreased the G proteins bound to both membranes. These findings indicate that different G proteins, both of which are IAP-sensitive, are present in the rER and Golgi apparatus, and suggest that these G proteins participate in the disturbance of intracellular transport of the secretory ameloblast exposed to fluoride.
-
-
Dental fluorosis and a polymorphism in the COL1A2 gene in Mexican children.
Highlights Dental fluorosis is a public health problem in the communities evaluated. The rs 412777 polymorphism in the COL1A2 gene was found in Mexican children. An association between the COL1A2 gene polymorphism and dental fluorosis was found. The genetic variant evaluated represents a risk factor to develop dental fluorosis. OBJECTIVE:
-
JNK Signaling Pathway Mediates Fluoride-Induced Upregulation of CK1a during Enamel Formation.
Fluorosis is a defect in the enamel mineral content caused by excessive fluoride intake during amelogenesis; the interaction of various factors in the development and progression of fluorosis has not been defined. Casein kinase 1a (CK1a) is constitutively active in cells and is involved in diverse cellular processes; however, its
-
Association between dental fluorosis prevalence and inflammation levels in school-aged children with low-to-moderate fluoride exposure.
Inflammation mediates the neurological deficits caused by fluoride. Thus, whether inflammation is the underlying mechanism of dental fluorosis (DF) in school-aged children is worth exploring. A cross-sectional study was conducted to investigate the association between inflammation and the prevalence and severity of DF with low-to-moderate fluoride exposure. Fasting morning urine
-
Fine mapping of dental fluorosis quantitative trait loci in mice.
Genetic factors underlie the susceptibility and the resistance to dental fluorosis (DF). The A/J (DF susceptible) and 129P3/J (DF resistant) mouse strains have previously been used to detect quantitative trait loci (QTLs) associated with DF on chromosome (Chr) 2 and Chr 11. In the present study, increased marker density genotyping
-
Fluoride-induced ultrastructural changes in exocrine pancreas cells of rats: fluoride disrupts the export of zymogens from the rough endoplasmic reticulum (rER).
Influence of fluoride on exocrine pancreas cells was examined morphologically with traditional and prolonged osmium fixation techniques for electron microscopy in the enamel fluorosis model rats injected subcutaneously twice a day with 20 mg/kg body weight of sodium fluoride. Although the rough endoplasmic reticulum (rER) of exocrine pancreas cells in
Related Studies :
-
-
-
Dental Fluorosis Is a "Hypo-mineralization" of Enamel
Teeth with fluorosis have an increase in porosity in the subsurface enamel ("hypomineralization"). The increased porosity of enamel found in fluorosis is a result of a fluoride-induced impairment in the clearance of proteins (amelogenins) from the developing teeth. Despite over 50 years of research, the exact mechanism by which fluoride impairs amelogin
-
Mechanisms by Which Fluoride Causes Dental Fluorosis Remain Unknown
When it comes to how fluoride impacts human health, no tissue in the body has been studied more than the teeth. Yet, despite over 50 years of research, the mechanism by which fluoride causes dental fluorosis (a hypo-mineralization of the enamel that results in significant staining of the teeth) is not
-
Dental Fluorosis: The "Cosmetic" Factor
Any condition that can cause children to be embarrassed about their physical appearance can have significant consequences on their self-esteem and confidence. Researchers have repeatedly found that "physical appearance [is] the best predictor of self-esteem" in adolescents, (Harter 2000) and that facial attractiveness, particularly the appearance of one's teeth, is a
-
"Mild" Dental Fluorosis: Perceptions & Psychological Impact
The vast majority of research has found that patients, parents, and the general public alike view mild fluorosis (TF score 3) as a significant blemish of the teeth, one that is likely to embarrass the affected child to a degree that cosmetic treatment would be warranted.
-
Dental Fluorosis in the U.S. 1950-2004
Before the widespread use of fluoride in dentistry, dental fluorosis was rarely found in western countries. Today, with virtually every toothpaste now containing fluoride, and most U.S. water supplies containing fluoride chemicals, dental fluorosis rates have reached unprecedented levels. In the 1950s, it was estimated that only 10% of children in
Related FAN Content :
-