Abstract
This study examined the relationship between transient peak plasma fluoride levels (subcutaneous injections) as well as lower but relatively constant levels (subcutaneous constant infusion) and the occurrence of disturbances in the enamel mineralization of the rat incisor as determined microradiographically. The fluoride doses were administered for 1 week, and the animals were killed 2 weeks later. Once daily peak plasma fluoride levels of 10 µM were uniformly associated with disturbances in the mineralization of the enamel, but once daily peak levels of 5 µM were not. Neither were twice daily 5-µM peaks. Relatively constant plasma fluoride levels, which averaged 3.3 µM, were associated with an increased incidence of changes in enamel formation and levels of 4.7 µM consistently associated with disturbances in enamel mineralization. These findings suggest that (1) the rat is a better model for the study of human enamel fluorosis than previously believed, and (2) slightly elevated but relatively constant plasma fluoride levels are more likely to be associated with the occurrence of fluorotic disturbances in the mineralization of enamel than are the more rare high and transient peak levels.
-
-
Collagenase 1A2 (COL1A2) gene A/C polymorphism in relation to severity of dental fluorosis
OBJECTIVES: The aim of this study was to evaluate the putative association between the presence of the COL1A2 gene A/C polymorphism and the severity of dental fluorosis in a sample exposed to high concentrations of fluoride. METHODS: A cross-sectional study was carried out that included 80 children residing in a community
-
Effect of dietary protein or calcium supplement on the expression of collagen I and dentine phosphoprotein of rats with dental fluorosis.
This study aims to assess the roles of dietary protein (Pr) and calcium (Ca) levels associated with excessive fluoride (F) intake and the impact of Pr, Ca, and F on expression of collagen I (COL I) and dentine phosphoprotein (DPP) in rat incisors. Seventy-two rats were randomly allotted to six
-
Enamel crystals of mice susceptible or resistant to dental fluorosis: an AFM study
Objective: This study aimed to assess the overall apatite crystals profile in the enamel matrix of mice susceptible (A/J strain) or resistant (129P3/J strain) to dental fluorosis through analyses by atomic force microscopy (AFM). Material and Methods: Samples from the enamel matrix in the early stages of secretion and maturation were obtained
-
Evaluation of genetic polymorphisms in MMP2, MMP9 and MMP20 in Brazilian children with dental fluorosis.
Highlights MMP2, MMP9 and MMP20 were expressed in the enamel development of the animalmodels. Polymorphisms in MMP2, MMP9 and MMP2 were not associated with dental fluorosis. Afro-descendants had a higher risk of dental fluorosis than caucasian. Recent studies suggested that genetics contribute to differences in dental fluorosis (DF) susceptibility among individuals
-
Uncoupling protein-2 is an antioxidant that is up-regulated in the enamel organ of fluoride-treated rats
Dental fluorosis is characterized by subsurface hypomineralization and retention of enamel matrix proteins. Fluoride (F-) exposure generates reactive oxygen species (ROS) that can cause endoplasmic reticulum (ER)-stress. We therefore screened oxidative stress arrays to identify genes regulated by F- exposure. Vitamin E is an antioxidant so we asked if a
Related Studies :
-
-
-
Mechanisms by Which Fluoride Causes Dental Fluorosis Remain Unknown
When it comes to how fluoride impacts human health, no tissue in the body has been studied more than the teeth. Yet, despite over 50 years of research, the mechanism by which fluoride causes dental fluorosis (a hypo-mineralization of the enamel that results in significant staining of the teeth) is not
-
Dental Fluorosis Is a "Hypo-mineralization" of Enamel
Teeth with fluorosis have an increase in porosity in the subsurface enamel ("hypomineralization"). The increased porosity of enamel found in fluorosis is a result of a fluoride-induced impairment in the clearance of proteins (amelogenins) from the developing teeth. Despite over 50 years of research, the exact mechanism by which fluoride impairs amelogin
-
Diagnostic Criteria for Dental Fluorosis: The TSIF ("Total Surface Index of Fluorosis")
The traditional criteria (the "Dean Index") for diagnosing dental fluorosis was developed in the first half of the 20th century by H. Trendley Dean. While the Dean Index is still widely used in surveys of fluorosis -- including the CDC's national surveys of fluorosis in the United States -- dental
-
Dental Fluorosis: The "Cosmetic" Factor
Any condition that can cause children to be embarrassed about their physical appearance can have significant consequences on their self-esteem and confidence. Researchers have repeatedly found that "physical appearance [is] the best predictor of self-esteem" in adolescents, (Harter 2000) and that facial attractiveness, particularly the appearance of one's teeth, is a
-
Dental Fluorosis in the U.S. 1950-2004
Before the widespread use of fluoride in dentistry, dental fluorosis was rarely found in western countries. Today, with virtually every toothpaste now containing fluoride, and most U.S. water supplies containing fluoride chemicals, dental fluorosis rates have reached unprecedented levels. In the 1950s, it was estimated that only 10% of children in
Related FAN Content :
-