Abstract
Dr. Richard Daley, Dr. Lewis D. Anderson, and Dr. Richard S. Riggins discussed the effects of high fluoride diets on bone tissue. Severe restrictions of calcium intake in growing rats produces a histological picture resembling osteoporosis. In this study a control series of rats, fed adequate amounts of calcium, was compared with three test groups receiving a low-calcium diet; a low-calcium, low-fluoride diet; and a low-calcium, high-fluoride diet, respectively. In the rats fed a low-calcium, low-fluoride diet the bone was not significantly different from that of the rats of the low-calcium diet. The bone from both of these groups fractured under smaller loads than did normal bone. There was no significant difference in the loads supported by the bone from any of the three low-calcium groups; however, the heavily fluorinated bone tended to break under less stress than did bone from any other group. These findings suggest that the heavily fluorinated bone was not as strong as the bone from normal rats or from rats fed low-calcium diets without fluoride.
-
-
Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs
The aim of the investigation was to measure the effect of fluoride on vertebral trabecular bone compressive strength and to correlate this with fluoride-induced changes in bone density. This correlation would express changes in the quality of bone during fluoride treatment. Pigs were used in the experiment because their trabecular
-
The effect of drinking water fluoridation on the fluoride content, strength and mineral density of human bone
The effect of drinking water fluoridation on the fluoride content of human bone, on cancellous bone strength and on the mineral density of bone was studied by analysing 158 autopsy samples of the anterior iliac crest from persons from two different areas. In the samples from the town of Kuopio,
-
Correlation between longitudinal, circumferential, and radial moduli in cortical bone: effect of mineral content
Previous studies indicate that changes in the longitudinal elastic properties of bone due to changes in mineral content are related to the longitudinal strength of bone tissue. Changes in mineral content are expected to affect bone tissue mechanical properties along all directions, albeit to different extents. However, changes in tissue
-
Effect of fluoride on bone formation and strength in Japanese quail
The effect of fluoride on bone metabolism was studied using Japanese quail fed diets containing 1.2% calcium, 1.2% calcium + 0.075% fluoride, 0.4% calcium, and 0.4% calcium + 0.075% fluoride. In the first experiments, quail were fed the diets immediately after hatching. Low calcium intake (0.4%) resulted in a 23%
-
Fluoride content and mineralization of red deer (Cervus elaphus) antlers and pedicles from fluoride polluted and uncontaminated regions
Fluoride, calcium, and phosphorus content as well as ash percentage and ash density of primary antlers and pedicle bones were studied in nine yearling red deer stags from a fluoride polluted region in North Bohemia (Czech Republic) and in nine control animals from two uncontaminated areas in West Germany. Fluoride
Related Studies :
-
-
-
Mechanisms by which fluoride may reduce bone strength
Based on a large body of animal and human research, it is now known that fluoride ingestion can reduce bone strength and increase the rate of fracture. There are several plausible mechanisms by which fluoride can reduce bone strength. As discussed below, these mechanisms include: Reduction in Cortical Bone Density De-bonding of
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Skeletal Fluorosis Causes Bones to be Brittle & Prone to Fracture
It has been known since as the early as the 1930s that patients with skeletal fluorosis have bone that is more brittle and prone to fracture. More recently, however, researchers have found that fluoride can reduce bone strength before the onset of skeletal fluorosis. Included below are some of the
-
The Relationship Between Fluoride, Bone Density, and Bone Strength
Although fluoride has generally been found to reduce the bone density of cortical bone, it is well documented that fluoride can increase the density of trabecular bone (aka cancellous bone). Trabecular bone is the primary bone of the spine, whereas cortical bone is the primary bone of the legs and arms. While increases in
-
Fluoride Reduces Bone Strength in Animals
Most animal studies investigating how fluoride effects bone strength have found either a detrimental effect, or no effect. Few animal studies have found a beneficial effect. In fact, one of the few studies that found a beneficial effect was unable to be repeated by the same authors in a later
Related FAN Content :
-