Abstract
The aim of the investigation was to measure the effect of fluoride on vertebral trabecular bone compressive strength and to correlate this with fluoride-induced changes in bone density. This correlation would express changes in the quality of bone during fluoride treatment. Pigs were used in the experiment because their trabecular bone structure and remodeling sequences are very similar to the human. Eight animals receiving a supplement of 2 mg F-/kg b.w. per day from age 8-14 months were compared with 8 control animals. Morphologic measurements in the animals receiving fluoride supplement showed a significant increase of 17% in bone density and a smaller, insignificant increase of 3% in ash weight analyses. Meanwhile, the mechanical parameters for the fluorotic animals were unchanged (maximum compressive strength, maximum stiffness, and energy-absorption capacity) or decreased (normalized compressive strength = maximum compressive load corrected for ash density). It is concluded that the increased bone mass during the initial stages of fluoride treatment does not necessarily indicate an improved bone quality. The discrepancy between bone mass and strength could be either a permanent or a temporary phenomenon and requires further investigation.
-
-
The effect of drinking water fluoridation on the fluoride content, strength and mineral density of human bone
The effect of drinking water fluoridation on the fluoride content of human bone, on cancellous bone strength and on the mineral density of bone was studied by analysing 158 autopsy samples of the anterior iliac crest from persons from two different areas. In the samples from the town of Kuopio,
-
Effects of fluoride on rat vertebral body biomechanical competence and bone mass
For more than 30 years, sodium fluoride has been a commonly used therapeutic agent for established osteoporosis because of its repeatedly documented anabolic effect on trabecular bone mass. Recent clinical and experimental studies have, however, indicated a possible detrimental effect of fluoride on bone strength. Thus, the efficacy of fluoride
-
Fluoride treatment increased serum IGF-1, bone turnover, and bone mass, but not bone strength, in rabbits
We hypothesized that fluoride partly acts by changing the levels of circulating calcium-regulating hormones and skeletal growth factors. The effects of oral fluoride on 24 female, Dutch-Belted, young adult rabbits were studied. The rabbits were divided into two study groups, one control and the other receiving about 16 mg fluoride/rabbit/day
-
High fluoride and low calcium levels in drinking water is associated with low bone mass, reduced bone quality and fragility fractures in sheep
Chronic environmental fluoride exposure under calcium stress causes fragility fractures due to osteoporosis and bone quality deterioration, at least in sheep. Proof of skeletal fluorosis, presenting without increased bone density, calls for a review of fracture incidence in areas with fluoridated groundwater, including an analysis of patients with low bone
-
Effect of sodium fluoride on bone biomechanical and histomorphometric parameters and on insulin signaling and insulin sensitivity in ovariectomized rats
Osteoporosis is a systemic disease characterized by bone degradation and decreased bone mass that promotes increased bone fragility and eventual fracture risk. Studies have investigated the use of sodium fluoride (NaF) for the treatment of osteoporosis. However, fluoride can alter glucose homeostasis. The aim of this study was to evaluate
Related Studies :
-
-
-
Skeletal Fluorosis Causes Bones to be Brittle & Prone to Fracture
It has been known since as the early as the 1930s that patients with skeletal fluorosis have bone that is more brittle and prone to fracture. More recently, however, researchers have found that fluoride can reduce bone strength before the onset of skeletal fluorosis. Included below are some of the
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Fluoride Reduces Bone Strength in Animals
Most animal studies investigating how fluoride effects bone strength have found either a detrimental effect, or no effect. Few animal studies have found a beneficial effect. In fact, one of the few studies that found a beneficial effect was unable to be repeated by the same authors in a later
-
In Vitro Studies on Fluoride & Bone Strength
The "in vitro" research on fluoride and bone strength confirms what has repeatedly been found in animal and human studies: the more fluoride a bone has, the weaker the bone becomes. In an in vitro bone study, the researcher directly exposes a human or animal bone to a fluoride solution
Related FAN Content :
-